Help: Convert remaining modules to block-style comments

This commit is contained in:
Kitware Robot
2018-10-22 10:31:08 -04:00
committed by Kyle Edwards
parent 7115aa6c22
commit df4ed1e9ff
202 changed files with 10078 additions and 9868 deletions

View File

@@ -1,236 +1,237 @@
# Distributed under the OSI-approved BSD 3-Clause License. See accompanying
# file Copyright.txt or https://cmake.org/licensing for details.
#.rst:
# WriteCompilerDetectionHeader
# ----------------------------
#
# This module provides the function write_compiler_detection_header().
#
# The ``WRITE_COMPILER_DETECTION_HEADER`` function can be used to generate
# a file suitable for preprocessor inclusion which contains macros to be
# used in source code::
#
# write_compiler_detection_header(
# FILE <file>
# PREFIX <prefix>
# [OUTPUT_FILES_VAR <output_files_var> OUTPUT_DIR <output_dir>]
# COMPILERS <compiler> [...]
# FEATURES <feature> [...]
# [BARE_FEATURES <feature> [...]]
# [VERSION <version>]
# [PROLOG <prolog>]
# [EPILOG <epilog>]
# [ALLOW_UNKNOWN_COMPILERS]
# [ALLOW_UNKNOWN_COMPILER_VERSIONS]
# )
#
# The ``write_compiler_detection_header`` function generates the
# file ``<file>`` with macros which all have the prefix ``<prefix>``.
#
# By default, all content is written directly to the ``<file>``. The
# ``OUTPUT_FILES_VAR`` may be specified to cause the compiler-specific
# content to be written to separate files. The separate files are then
# available in the ``<output_files_var>`` and may be consumed by the caller
# for installation for example. The ``OUTPUT_DIR`` specifies a relative
# path from the main ``<file>`` to the compiler-specific files. For example:
#
# .. code-block:: cmake
#
# write_compiler_detection_header(
# FILE climbingstats_compiler_detection.h
# PREFIX ClimbingStats
# OUTPUT_FILES_VAR support_files
# OUTPUT_DIR compilers
# COMPILERS GNU Clang MSVC Intel
# FEATURES cxx_variadic_templates
# )
# install(FILES
# ${CMAKE_CURRENT_BINARY_DIR}/climbingstats_compiler_detection.h
# DESTINATION include
# )
# install(FILES
# ${support_files}
# DESTINATION include/compilers
# )
#
#
# ``VERSION`` may be used to specify the API version to be generated.
# Future versions of CMake may introduce alternative APIs. A given
# API is selected by any ``<version>`` value greater than or equal
# to the version of CMake that introduced the given API and less
# than the version of CMake that introduced its succeeding API.
# The value of the :variable:`CMAKE_MINIMUM_REQUIRED_VERSION`
# variable is used if no explicit version is specified.
# (As of CMake version |release| there is only one API version.)
#
# ``PROLOG`` may be specified as text content to write at the start of the
# header. ``EPILOG`` may be specified as text content to write at the end
# of the header
#
# At least one ``<compiler>`` and one ``<feature>`` must be listed. Compilers
# which are known to CMake, but not specified are detected and a preprocessor
# ``#error`` is generated for them. A preprocessor macro matching
# ``<PREFIX>_COMPILER_IS_<compiler>`` is generated for each compiler
# known to CMake to contain the value ``0`` or ``1``.
#
# Possible compiler identifiers are documented with the
# :variable:`CMAKE_<LANG>_COMPILER_ID` variable.
# Available features in this version of CMake are listed in the
# :prop_gbl:`CMAKE_C_KNOWN_FEATURES` and
# :prop_gbl:`CMAKE_CXX_KNOWN_FEATURES` global properties.
# The ``{c,cxx}_std_*`` meta-features are ignored if requested.
#
# See the :manual:`cmake-compile-features(7)` manual for information on
# compile features.
#
# ``BARE_FEATURES`` will define the compatibility macros with the name used in
# newer versions of the language standard, so the code can use the new feature
# name unconditionally.
#
# ``ALLOW_UNKNOWN_COMPILERS`` and ``ALLOW_UNKNOWN_COMPILER_VERSIONS`` cause
# the module to generate conditions that treat unknown compilers as simply
# lacking all features. Without these options the default behavior is to
# generate a ``#error`` for unknown compilers and versions.
#
# Feature Test Macros
# ===================
#
# For each compiler, a preprocessor macro is generated matching
# ``<PREFIX>_COMPILER_IS_<compiler>`` which has the content either ``0``
# or ``1``, depending on the compiler in use. Preprocessor macros for
# compiler version components are generated matching
# ``<PREFIX>_COMPILER_VERSION_MAJOR`` ``<PREFIX>_COMPILER_VERSION_MINOR``
# and ``<PREFIX>_COMPILER_VERSION_PATCH`` containing decimal values
# for the corresponding compiler version components, if defined.
#
# A preprocessor test is generated based on the compiler version
# denoting whether each feature is enabled. A preprocessor macro
# matching ``<PREFIX>_COMPILER_<FEATURE>``, where ``<FEATURE>`` is the
# upper-case ``<feature>`` name, is generated to contain the value
# ``0`` or ``1`` depending on whether the compiler in use supports the
# feature:
#
# .. code-block:: cmake
#
# write_compiler_detection_header(
# FILE climbingstats_compiler_detection.h
# PREFIX ClimbingStats
# COMPILERS GNU Clang AppleClang MSVC Intel
# FEATURES cxx_variadic_templates
# )
#
# .. code-block:: c++
#
# #if ClimbingStats_COMPILER_CXX_VARIADIC_TEMPLATES
# template<typename... T>
# void someInterface(T t...) { /* ... */ }
# #else
# // Compatibility versions
# template<typename T1>
# void someInterface(T1 t1) { /* ... */ }
# template<typename T1, typename T2>
# void someInterface(T1 t1, T2 t2) { /* ... */ }
# template<typename T1, typename T2, typename T3>
# void someInterface(T1 t1, T2 t2, T3 t3) { /* ... */ }
# #endif
#
# Symbol Macros
# =============
#
# Some additional symbol-defines are created for particular features for
# use as symbols which may be conditionally defined empty:
#
# .. code-block:: c++
#
# class MyClass ClimbingStats_FINAL
# {
# ClimbingStats_CONSTEXPR int someInterface() { return 42; }
# };
#
# The ``ClimbingStats_FINAL`` macro will expand to ``final`` if the
# compiler (and its flags) support the ``cxx_final`` feature, and the
# ``ClimbingStats_CONSTEXPR`` macro will expand to ``constexpr``
# if ``cxx_constexpr`` is supported.
#
# If ``BARE_FEATURES cxx_final`` was given as argument the ``final`` keyword
# will be defined for old compilers, too.
#
# The following features generate corresponding symbol defines and if they
# are available as ``BARE_FEATURES``:
#
# ========================== =================================== ================= ======
# Feature Define Symbol bare
# ========================== =================================== ================= ======
# ``c_restrict`` ``<PREFIX>_RESTRICT`` ``restrict`` yes
# ``cxx_constexpr`` ``<PREFIX>_CONSTEXPR`` ``constexpr`` yes
# ``cxx_deleted_functions`` ``<PREFIX>_DELETED_FUNCTION`` ``= delete``
# ``cxx_extern_templates`` ``<PREFIX>_EXTERN_TEMPLATE`` ``extern``
# ``cxx_final`` ``<PREFIX>_FINAL`` ``final`` yes
# ``cxx_noexcept`` ``<PREFIX>_NOEXCEPT`` ``noexcept`` yes
# ``cxx_noexcept`` ``<PREFIX>_NOEXCEPT_EXPR(X)`` ``noexcept(X)``
# ``cxx_override`` ``<PREFIX>_OVERRIDE`` ``override`` yes
# ========================== =================================== ================= ======
#
# Compatibility Implementation Macros
# ===================================
#
# Some features are suitable for wrapping in a macro with a backward
# compatibility implementation if the compiler does not support the feature.
#
# When the ``cxx_static_assert`` feature is not provided by the compiler,
# a compatibility implementation is available via the
# ``<PREFIX>_STATIC_ASSERT(COND)`` and
# ``<PREFIX>_STATIC_ASSERT_MSG(COND, MSG)`` function-like macros. The macros
# expand to ``static_assert`` where that compiler feature is available, and
# to a compatibility implementation otherwise. In the first form, the
# condition is stringified in the message field of ``static_assert``. In
# the second form, the message ``MSG`` is passed to the message field of
# ``static_assert``, or ignored if using the backward compatibility
# implementation.
#
# The ``cxx_attribute_deprecated`` feature provides a macro definition
# ``<PREFIX>_DEPRECATED``, which expands to either the standard
# ``[[deprecated]]`` attribute or a compiler-specific decorator such
# as ``__attribute__((__deprecated__))`` used by GNU compilers.
#
# The ``cxx_alignas`` feature provides a macro definition
# ``<PREFIX>_ALIGNAS`` which expands to either the standard ``alignas``
# decorator or a compiler-specific decorator such as
# ``__attribute__ ((__aligned__))`` used by GNU compilers.
#
# The ``cxx_alignof`` feature provides a macro definition
# ``<PREFIX>_ALIGNOF`` which expands to either the standard ``alignof``
# decorator or a compiler-specific decorator such as ``__alignof__``
# used by GNU compilers.
#
# ============================= ================================ ===================== ======
# Feature Define Symbol bare
# ============================= ================================ ===================== ======
# ``cxx_alignas`` ``<PREFIX>_ALIGNAS`` ``alignas``
# ``cxx_alignof`` ``<PREFIX>_ALIGNOF`` ``alignof``
# ``cxx_nullptr`` ``<PREFIX>_NULLPTR`` ``nullptr`` yes
# ``cxx_static_assert`` ``<PREFIX>_STATIC_ASSERT`` ``static_assert``
# ``cxx_static_assert`` ``<PREFIX>_STATIC_ASSERT_MSG`` ``static_assert``
# ``cxx_attribute_deprecated`` ``<PREFIX>_DEPRECATED`` ``[[deprecated]]``
# ``cxx_attribute_deprecated`` ``<PREFIX>_DEPRECATED_MSG`` ``[[deprecated]]``
# ``cxx_thread_local`` ``<PREFIX>_THREAD_LOCAL`` ``thread_local``
# ============================= ================================ ===================== ======
#
# A use-case which arises with such deprecation macros is the deprecation
# of an entire library. In that case, all public API in the library may
# be decorated with the ``<PREFIX>_DEPRECATED`` macro. This results in
# very noisy build output when building the library itself, so the macro
# may be may be defined to empty in that case when building the deprecated
# library:
#
# .. code-block:: cmake
#
# add_library(compat_support ${srcs})
# target_compile_definitions(compat_support
# PRIVATE
# CompatSupport_DEPRECATED=
# )
#[=======================================================================[.rst:
WriteCompilerDetectionHeader
----------------------------
This module provides the function write_compiler_detection_header().
The ``WRITE_COMPILER_DETECTION_HEADER`` function can be used to generate
a file suitable for preprocessor inclusion which contains macros to be
used in source code::
write_compiler_detection_header(
FILE <file>
PREFIX <prefix>
[OUTPUT_FILES_VAR <output_files_var> OUTPUT_DIR <output_dir>]
COMPILERS <compiler> [...]
FEATURES <feature> [...]
[BARE_FEATURES <feature> [...]]
[VERSION <version>]
[PROLOG <prolog>]
[EPILOG <epilog>]
[ALLOW_UNKNOWN_COMPILERS]
[ALLOW_UNKNOWN_COMPILER_VERSIONS]
)
The ``write_compiler_detection_header`` function generates the
file ``<file>`` with macros which all have the prefix ``<prefix>``.
By default, all content is written directly to the ``<file>``. The
``OUTPUT_FILES_VAR`` may be specified to cause the compiler-specific
content to be written to separate files. The separate files are then
available in the ``<output_files_var>`` and may be consumed by the caller
for installation for example. The ``OUTPUT_DIR`` specifies a relative
path from the main ``<file>`` to the compiler-specific files. For example:
.. code-block:: cmake
write_compiler_detection_header(
FILE climbingstats_compiler_detection.h
PREFIX ClimbingStats
OUTPUT_FILES_VAR support_files
OUTPUT_DIR compilers
COMPILERS GNU Clang MSVC Intel
FEATURES cxx_variadic_templates
)
install(FILES
${CMAKE_CURRENT_BINARY_DIR}/climbingstats_compiler_detection.h
DESTINATION include
)
install(FILES
${support_files}
DESTINATION include/compilers
)
``VERSION`` may be used to specify the API version to be generated.
Future versions of CMake may introduce alternative APIs. A given
API is selected by any ``<version>`` value greater than or equal
to the version of CMake that introduced the given API and less
than the version of CMake that introduced its succeeding API.
The value of the :variable:`CMAKE_MINIMUM_REQUIRED_VERSION`
variable is used if no explicit version is specified.
(As of CMake version |release| there is only one API version.)
``PROLOG`` may be specified as text content to write at the start of the
header. ``EPILOG`` may be specified as text content to write at the end
of the header
At least one ``<compiler>`` and one ``<feature>`` must be listed. Compilers
which are known to CMake, but not specified are detected and a preprocessor
``#error`` is generated for them. A preprocessor macro matching
``<PREFIX>_COMPILER_IS_<compiler>`` is generated for each compiler
known to CMake to contain the value ``0`` or ``1``.
Possible compiler identifiers are documented with the
:variable:`CMAKE_<LANG>_COMPILER_ID` variable.
Available features in this version of CMake are listed in the
:prop_gbl:`CMAKE_C_KNOWN_FEATURES` and
:prop_gbl:`CMAKE_CXX_KNOWN_FEATURES` global properties.
The ``{c,cxx}_std_*`` meta-features are ignored if requested.
See the :manual:`cmake-compile-features(7)` manual for information on
compile features.
``BARE_FEATURES`` will define the compatibility macros with the name used in
newer versions of the language standard, so the code can use the new feature
name unconditionally.
``ALLOW_UNKNOWN_COMPILERS`` and ``ALLOW_UNKNOWN_COMPILER_VERSIONS`` cause
the module to generate conditions that treat unknown compilers as simply
lacking all features. Without these options the default behavior is to
generate a ``#error`` for unknown compilers and versions.
Feature Test Macros
===================
For each compiler, a preprocessor macro is generated matching
``<PREFIX>_COMPILER_IS_<compiler>`` which has the content either ``0``
or ``1``, depending on the compiler in use. Preprocessor macros for
compiler version components are generated matching
``<PREFIX>_COMPILER_VERSION_MAJOR`` ``<PREFIX>_COMPILER_VERSION_MINOR``
and ``<PREFIX>_COMPILER_VERSION_PATCH`` containing decimal values
for the corresponding compiler version components, if defined.
A preprocessor test is generated based on the compiler version
denoting whether each feature is enabled. A preprocessor macro
matching ``<PREFIX>_COMPILER_<FEATURE>``, where ``<FEATURE>`` is the
upper-case ``<feature>`` name, is generated to contain the value
``0`` or ``1`` depending on whether the compiler in use supports the
feature:
.. code-block:: cmake
write_compiler_detection_header(
FILE climbingstats_compiler_detection.h
PREFIX ClimbingStats
COMPILERS GNU Clang AppleClang MSVC Intel
FEATURES cxx_variadic_templates
)
.. code-block:: c++
#if ClimbingStats_COMPILER_CXX_VARIADIC_TEMPLATES
template<typename... T>
void someInterface(T t...) { /* ... */ }
#else
// Compatibility versions
template<typename T1>
void someInterface(T1 t1) { /* ... */ }
template<typename T1, typename T2>
void someInterface(T1 t1, T2 t2) { /* ... */ }
template<typename T1, typename T2, typename T3>
void someInterface(T1 t1, T2 t2, T3 t3) { /* ... */ }
#endif
Symbol Macros
=============
Some additional symbol-defines are created for particular features for
use as symbols which may be conditionally defined empty:
.. code-block:: c++
class MyClass ClimbingStats_FINAL
{
ClimbingStats_CONSTEXPR int someInterface() { return 42; }
};
The ``ClimbingStats_FINAL`` macro will expand to ``final`` if the
compiler (and its flags) support the ``cxx_final`` feature, and the
``ClimbingStats_CONSTEXPR`` macro will expand to ``constexpr``
if ``cxx_constexpr`` is supported.
If ``BARE_FEATURES cxx_final`` was given as argument the ``final`` keyword
will be defined for old compilers, too.
The following features generate corresponding symbol defines and if they
are available as ``BARE_FEATURES``:
========================== =================================== ================= ======
Feature Define Symbol bare
========================== =================================== ================= ======
``c_restrict`` ``<PREFIX>_RESTRICT`` ``restrict`` yes
``cxx_constexpr`` ``<PREFIX>_CONSTEXPR`` ``constexpr`` yes
``cxx_deleted_functions`` ``<PREFIX>_DELETED_FUNCTION`` ``= delete``
``cxx_extern_templates`` ``<PREFIX>_EXTERN_TEMPLATE`` ``extern``
``cxx_final`` ``<PREFIX>_FINAL`` ``final`` yes
``cxx_noexcept`` ``<PREFIX>_NOEXCEPT`` ``noexcept`` yes
``cxx_noexcept`` ``<PREFIX>_NOEXCEPT_EXPR(X)`` ``noexcept(X)``
``cxx_override`` ``<PREFIX>_OVERRIDE`` ``override`` yes
========================== =================================== ================= ======
Compatibility Implementation Macros
===================================
Some features are suitable for wrapping in a macro with a backward
compatibility implementation if the compiler does not support the feature.
When the ``cxx_static_assert`` feature is not provided by the compiler,
a compatibility implementation is available via the
``<PREFIX>_STATIC_ASSERT(COND)`` and
``<PREFIX>_STATIC_ASSERT_MSG(COND, MSG)`` function-like macros. The macros
expand to ``static_assert`` where that compiler feature is available, and
to a compatibility implementation otherwise. In the first form, the
condition is stringified in the message field of ``static_assert``. In
the second form, the message ``MSG`` is passed to the message field of
``static_assert``, or ignored if using the backward compatibility
implementation.
The ``cxx_attribute_deprecated`` feature provides a macro definition
``<PREFIX>_DEPRECATED``, which expands to either the standard
``[[deprecated]]`` attribute or a compiler-specific decorator such
as ``__attribute__((__deprecated__))`` used by GNU compilers.
The ``cxx_alignas`` feature provides a macro definition
``<PREFIX>_ALIGNAS`` which expands to either the standard ``alignas``
decorator or a compiler-specific decorator such as
``__attribute__ ((__aligned__))`` used by GNU compilers.
The ``cxx_alignof`` feature provides a macro definition
``<PREFIX>_ALIGNOF`` which expands to either the standard ``alignof``
decorator or a compiler-specific decorator such as ``__alignof__``
used by GNU compilers.
============================= ================================ ===================== ======
Feature Define Symbol bare
============================= ================================ ===================== ======
``cxx_alignas`` ``<PREFIX>_ALIGNAS`` ``alignas``
``cxx_alignof`` ``<PREFIX>_ALIGNOF`` ``alignof``
``cxx_nullptr`` ``<PREFIX>_NULLPTR`` ``nullptr`` yes
``cxx_static_assert`` ``<PREFIX>_STATIC_ASSERT`` ``static_assert``
``cxx_static_assert`` ``<PREFIX>_STATIC_ASSERT_MSG`` ``static_assert``
``cxx_attribute_deprecated`` ``<PREFIX>_DEPRECATED`` ``[[deprecated]]``
``cxx_attribute_deprecated`` ``<PREFIX>_DEPRECATED_MSG`` ``[[deprecated]]``
``cxx_thread_local`` ``<PREFIX>_THREAD_LOCAL`` ``thread_local``
============================= ================================ ===================== ======
A use-case which arises with such deprecation macros is the deprecation
of an entire library. In that case, all public API in the library may
be decorated with the ``<PREFIX>_DEPRECATED`` macro. This results in
very noisy build output when building the library itself, so the macro
may be may be defined to empty in that case when building the deprecated
library:
.. code-block:: cmake
add_library(compat_support ${srcs})
target_compile_definitions(compat_support
PRIVATE
CompatSupport_DEPRECATED=
)
#]=======================================================================]
include(${CMAKE_CURRENT_LIST_DIR}/CMakeCompilerIdDetection.cmake)