Files
EyePy/demo.py
2025-02-27 11:26:09 +08:00

273 lines
9.5 KiB
Python

import cv2
import numpy as np
import tkinter as tk
import time
import argparse
import os
from gaze_estimator import GazeEstimator
from calibration import (
run_9_point_calibration,
run_5_point_calibration,
run_lissajous_calibration,
fine_tune_kalman_filter,
)
from scipy.stats import gaussian_kde
def main():
parser = argparse.ArgumentParser(
description="Gaze Estimation with Kalman Filter or KDE"
)
parser.add_argument(
"--filter",
choices=["kalman", "kde", "none"],
default="kde",
help="Filter method: kalman, kde, or none",
)
parser.add_argument("--camera", type=int, default=0, help="Camera index")
parser.add_argument(
"--calibration",
choices=["9p", "5p", "lissajous"],
default="9p",
help="Choose calibration method (9p, 5p, or lissajous).",
)
parser.add_argument(
"--background", type=str, default=None, help="Path to background image"
)
parser.add_argument(
"--confidence",
type=float,
default=0.5,
help="Confidence interval for KDE contour (0 < value < 1)",
)
args = parser.parse_args()
filter_method = args.filter
camera_index = args.camera
calibration_method = args.calibration
background_path = args.background
confidence_level = args.confidence
gaze_estimator = GazeEstimator()
# Run the chosen calibration method (default 9p)
if calibration_method == "9p":
run_9_point_calibration(gaze_estimator, camera_index=camera_index)
elif calibration_method == "5p":
run_5_point_calibration(gaze_estimator, camera_index=camera_index)
else:
run_lissajous_calibration(gaze_estimator, camera_index=camera_index)
if filter_method == "kalman":
kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array(
[[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]],
np.float32,
)
kalman.processNoiseCov = np.eye(4, dtype=np.float32) * 10
kalman.measurementNoiseCov = np.eye(2, dtype=np.float32) * 1
kalman.statePre = np.zeros((4, 1), np.float32)
kalman.statePost = np.zeros((4, 1), np.float32)
fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=camera_index)
root = tk.Tk()
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
root.destroy()
cam_width, cam_height = 320, 240
if background_path and os.path.isfile(background_path):
background = cv2.imread(background_path)
background = cv2.resize(background, (screen_width, screen_height))
else:
background = np.zeros((screen_height, screen_width, 3), dtype=np.uint8)
background[:] = (50, 50, 50)
cv2.namedWindow("Gaze Estimation", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty(
"Gaze Estimation", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN
)
cap = cv2.VideoCapture(camera_index)
prev_time = time.time()
if filter_method == "kde":
gaze_history = []
time_window = 0.5 # seconds
# Variables for gaze cursor fade effect
cursor_alpha = 0.0
cursor_alpha_step = 0.05
while True:
ret, frame = cap.read()
if not ret:
continue
features, blink_detected = gaze_estimator.extract_features(frame)
if features is not None and not blink_detected:
X = np.array([features])
gaze_point = gaze_estimator.predict(X)[0]
x, y = int(gaze_point[0]), int(gaze_point[1])
if filter_method == "kalman":
prediction = kalman.predict()
x_pred = int(prediction[0][0])
y_pred = int(prediction[1][0])
# Clamp the predicted gaze point to the screen boundaries
x_pred = max(0, min(x_pred, screen_width - 1))
y_pred = max(0, min(y_pred, screen_height - 1))
measurement = np.array([[np.float32(x)], [np.float32(y)]])
if np.count_nonzero(kalman.statePre) == 0:
kalman.statePre[:2] = measurement
kalman.statePost[:2] = measurement
kalman.correct(measurement)
elif filter_method == "kde":
current_time = time.time()
gaze_history.append((current_time, x, y))
# Remove old entries
gaze_history = [
(t, gx, gy)
for (t, gx, gy) in gaze_history
if current_time - t <= time_window
]
if len(gaze_history) > 1:
gaze_array = np.array([(gx, gy) for (t, gx, gy) in gaze_history])
# Check for singular covariance
try:
kde = gaussian_kde(gaze_array.T)
# Compute densities on a grid for visualization
xi, yi = np.mgrid[0:screen_width:320j, 0:screen_height:200j]
coords = np.vstack([xi.ravel(), yi.ravel()])
zi = kde(coords).reshape(xi.shape).T
# Find the contour level for the desired confidence interval
levels = np.linspace(zi.min(), zi.max(), 100)
zi_flat = zi.flatten()
sorted_indices = np.argsort(zi_flat)[::-1]
zi_sorted = zi_flat[sorted_indices]
cumsum = np.cumsum(zi_sorted)
cumsum /= cumsum[-1] # Normalize to get CDF
# Find the density threshold corresponding to the confidence level
idx = np.searchsorted(cumsum, confidence_level)
if idx >= len(zi_sorted):
idx = len(zi_sorted) - 1
threshold = zi_sorted[idx]
# Create a binary mask where densities are above the threshold
mask = np.where(zi >= threshold, 1, 0).astype(np.uint8)
# Resize mask to screen dimensions
mask_resized = cv2.resize(mask, (screen_width, screen_height))
# Find contours in the binary mask
contours, _ = cv2.findContours(
mask_resized, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
x_pred = int(np.mean(gaze_array[:, 0]))
y_pred = int(np.mean(gaze_array[:, 1]))
except np.linalg.LinAlgError:
x_pred = int(np.mean(gaze_array[:, 0]))
y_pred = int(np.mean(gaze_array[:, 1]))
contours = []
else:
x_pred, y_pred = x, y
contours = []
# Increase cursor alpha for fade-in effect
elif filter_method == "none":
x_pred, y_pred = x, y
contours = []
cursor_alpha = min(cursor_alpha + cursor_alpha_step, 1.0)
else:
x_pred, y_pred = None, None
blink_detected = True
contours = []
# Decrease cursor alpha for fade-out effect
cursor_alpha = max(cursor_alpha - cursor_alpha_step, 0.0)
canvas = background.copy()
if filter_method == "kde" and features is not None and not blink_detected:
if len(gaze_history) > 1:
if "contours" in locals():
cv2.drawContours(canvas, contours, -1, (15, 182, 242), thickness=5)
# Draw the gaze cursor with fade effect
if x_pred is not None and y_pred is not None and cursor_alpha > 0:
overlay = canvas.copy()
cv2.circle(overlay, (x_pred, y_pred), 30, (0, 0, 255), -1)
cv2.circle(overlay, (x_pred, y_pred), 25, (255, 255, 255), -1)
cv2.addWeighted(
overlay, cursor_alpha * 0.6, canvas, 1 - cursor_alpha * 0.6, 0, canvas
)
# Draw the camera feed
small_frame = cv2.resize(frame, (cam_width, cam_height))
frame_border = cv2.copyMakeBorder(
small_frame, 2, 2, 2, 2, cv2.BORDER_CONSTANT, value=(255, 255, 255)
)
x_offset = screen_width - cam_width - 20
y_offset = screen_height - cam_height - 20
canvas[
y_offset : y_offset + cam_height + 4, x_offset : x_offset + cam_width + 4
] = frame_border
# FPS and blink indicator
current_time = time.time()
fps = 1 / (current_time - prev_time)
prev_time = current_time
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.2
font_color = (255, 255, 255)
font_thickness = 2
cv2.putText(
canvas,
f"FPS: {int(fps)}",
(50, 50),
font,
font_scale,
font_color,
font_thickness,
lineType=cv2.LINE_AA,
)
blink_text = "Blinking" if blink_detected else "Not Blinking"
blink_color = (0, 0, 255) if blink_detected else (0, 255, 0)
cv2.putText(
canvas,
blink_text,
(50, 100),
font,
font_scale,
blink_color,
font_thickness,
lineType=cv2.LINE_AA,
)
cv2.imshow("Gaze Estimation", canvas)
if cv2.waitKey(1) == 27:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()