feat(diffusers): implement dynamic pipeline loader to remove per-pipeline conditionals (#7365)

* Initial plan

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add dynamic loader for diffusers pipelines and refactor backend.py

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fix pipeline discovery error handling and test mock issue

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Address code review feedback: direct imports, better error handling, improved tests

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Address remaining code review feedback: specific exceptions, registry access, test imports

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add defensive fallback for DiffusionPipeline registry access

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Actually use dynamic pipeline loading for all pipelines in backend

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Use dynamic loader consistently for all pipelines including AutoPipelineForText2Image

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Move dynamic loader tests into test.py for CI compatibility

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Extend dynamic loader to discover any diffusers class type, not just DiffusionPipeline

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add AutoPipeline classes to pipeline registry for default model loading

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix(python): set pyvenv python home

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* do pyenv update during start

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Minor changes

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@localai.io>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
This commit is contained in:
Copilot
2025-12-04 19:02:06 +01:00
committed by GitHub
parent 92ee8c2256
commit 1abbedd732
5 changed files with 1141 additions and 155 deletions

View File

@@ -237,7 +237,14 @@ function getBuildProfile() {
# Make the venv relocatable:
# - rewrite venv/bin/python{,3} to relative symlinks into $(_portable_dir)
# - normalize entrypoint shebangs to /usr/bin/env python3
# - optionally update pyvenv.cfg to point to the portable Python directory (only at runtime)
# Usage: _makeVenvPortable [--update-pyvenv-cfg]
_makeVenvPortable() {
local update_pyvenv_cfg=false
if [ "${1:-}" = "--update-pyvenv-cfg" ]; then
update_pyvenv_cfg=true
fi
local venv_dir="${EDIR}/venv"
local vbin="${venv_dir}/bin"
@@ -255,7 +262,39 @@ _makeVenvPortable() {
ln -s "${rel_py}" "${vbin}/python3"
ln -s "python3" "${vbin}/python"
# 2) Rewrite shebangs of entry points to use env, so the venv is relocatable
# 2) Update pyvenv.cfg to point to the portable Python directory (only at runtime)
# Use absolute path resolved at runtime so it works when the venv is copied
if [ "$update_pyvenv_cfg" = "true" ]; then
local pyvenv_cfg="${venv_dir}/pyvenv.cfg"
if [ -f "${pyvenv_cfg}" ]; then
local portable_dir="$(_portable_dir)"
# Resolve to absolute path - this ensures it works when the backend is copied
# Only resolve if the directory exists (it should if ensurePortablePython was called)
if [ -d "${portable_dir}" ]; then
portable_dir="$(cd "${portable_dir}" && pwd)"
else
# Fallback to relative path if directory doesn't exist yet
portable_dir="../python"
fi
local sed_i=(sed -i)
# macOS/BSD sed needs a backup suffix; GNU sed doesn't. Make it portable:
if sed --version >/dev/null 2>&1; then
sed_i=(sed -i)
else
sed_i=(sed -i '')
fi
# Update the home field in pyvenv.cfg
# Handle both absolute paths (starting with /) and relative paths
if grep -q "^home = " "${pyvenv_cfg}"; then
"${sed_i[@]}" "s|^home = .*|home = ${portable_dir}|" "${pyvenv_cfg}"
else
# If home field doesn't exist, add it
echo "home = ${portable_dir}" >> "${pyvenv_cfg}"
fi
fi
fi
# 3) Rewrite shebangs of entry points to use env, so the venv is relocatable
# Only touch text files that start with #! and reference the current venv.
local ve_abs="${vbin}/python"
local sed_i=(sed -i)
@@ -316,6 +355,7 @@ function ensureVenv() {
fi
fi
if [ "x${PORTABLE_PYTHON}" == "xtrue" ]; then
# During install, only update symlinks and shebangs, not pyvenv.cfg
_makeVenvPortable
fi
fi
@@ -420,6 +460,11 @@ function installRequirements() {
# - ${BACKEND_NAME}.py
function startBackend() {
ensureVenv
# Update pyvenv.cfg before running to ensure paths are correct for current location
# This is critical when the backend position is dynamic (e.g., copied from container)
if [ "x${PORTABLE_PYTHON}" == "xtrue" ] || [ -x "$(_portable_python)" ]; then
_makeVenvPortable --update-pyvenv-cfg
fi
if [ ! -z "${BACKEND_FILE:-}" ]; then
exec "${EDIR}/venv/bin/python" "${BACKEND_FILE}" "$@"
elif [ -e "${MY_DIR}/server.py" ]; then

View File

@@ -1,5 +1,136 @@
# Creating a separate environment for the diffusers project
# LocalAI Diffusers Backend
This backend provides gRPC access to Hugging Face diffusers pipelines with dynamic pipeline loading.
## Creating a separate environment for the diffusers project
```
make diffusers
```
```
## Dynamic Pipeline Loader
The diffusers backend includes a dynamic pipeline loader (`diffusers_dynamic_loader.py`) that automatically discovers and loads diffusers pipelines at runtime. This eliminates the need for per-pipeline conditional statements - new pipelines added to diffusers become available automatically without code changes.
### How It Works
1. **Pipeline Discovery**: On first use, the loader scans the `diffusers` package to find all classes that inherit from `DiffusionPipeline`.
2. **Registry Caching**: Discovery results are cached for the lifetime of the process to avoid repeated scanning.
3. **Task Aliases**: The loader automatically derives task aliases from class names (e.g., "text-to-image", "image-to-image", "inpainting") without hardcoding.
4. **Multiple Resolution Methods**: Pipelines can be resolved by:
- Exact class name (e.g., `StableDiffusionPipeline`)
- Task alias (e.g., `text-to-image`, `img2img`)
- Model ID (uses HuggingFace Hub to infer pipeline type)
### Usage Examples
```python
from diffusers_dynamic_loader import (
load_diffusers_pipeline,
get_available_pipelines,
get_available_tasks,
resolve_pipeline_class,
discover_diffusers_classes,
get_available_classes,
)
# List all available pipelines
pipelines = get_available_pipelines()
print(f"Available pipelines: {pipelines[:10]}...")
# List all task aliases
tasks = get_available_tasks()
print(f"Available tasks: {tasks}")
# Resolve a pipeline class by name
cls = resolve_pipeline_class(class_name="StableDiffusionPipeline")
# Resolve by task alias
cls = resolve_pipeline_class(task="stable-diffusion")
# Load and instantiate a pipeline
pipe = load_diffusers_pipeline(
class_name="StableDiffusionPipeline",
model_id="runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16
)
# Load from single file
pipe = load_diffusers_pipeline(
class_name="StableDiffusionPipeline",
model_id="/path/to/model.safetensors",
from_single_file=True,
torch_dtype=torch.float16
)
# Discover other diffusers classes (schedulers, models, etc.)
schedulers = discover_diffusers_classes("SchedulerMixin")
print(f"Available schedulers: {list(schedulers.keys())[:5]}...")
# Get list of available scheduler classes
scheduler_list = get_available_classes("SchedulerMixin")
```
### Generic Class Discovery
The dynamic loader can discover not just pipelines but any class type from diffusers:
```python
# Discover all scheduler classes
schedulers = discover_diffusers_classes("SchedulerMixin")
# Discover all model classes
models = discover_diffusers_classes("ModelMixin")
# Get a sorted list of available classes
scheduler_names = get_available_classes("SchedulerMixin")
```
### Special Pipeline Handling
Most pipelines are loaded dynamically through `load_diffusers_pipeline()`. Only pipelines requiring truly custom initialization logic are handled explicitly:
- `FluxTransformer2DModel`: Requires quantization and custom transformer loading (cannot use dynamic loader)
- `WanPipeline` / `WanImageToVideoPipeline`: Uses dynamic loader with special VAE (float32 dtype)
- `SanaPipeline`: Uses dynamic loader with post-load dtype conversion for VAE/text encoder
- `StableVideoDiffusionPipeline`: Uses dynamic loader with CPU offload handling
- `VideoDiffusionPipeline`: Alias for DiffusionPipeline with video flags
All other pipelines (StableDiffusionPipeline, StableDiffusionXLPipeline, FluxPipeline, etc.) are loaded purely through the dynamic loader.
### Error Handling
When a pipeline cannot be resolved, the loader provides helpful error messages listing available pipelines and tasks:
```
ValueError: Unknown pipeline class 'NonExistentPipeline'.
Available pipelines: AnimateDiffPipeline, AnimateDiffVideoToVideoPipeline, ...
```
## Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `COMPEL` | `0` | Enable Compel for prompt weighting |
| `XPU` | `0` | Enable Intel XPU support |
| `CLIPSKIP` | `1` | Enable CLIP skip support |
| `SAFETENSORS` | `1` | Use safetensors format |
| `CHUNK_SIZE` | `8` | Decode chunk size for video |
| `FPS` | `7` | Video frames per second |
| `DISABLE_CPU_OFFLOAD` | `0` | Disable CPU offload |
| `FRAMES` | `64` | Number of video frames |
| `BFL_REPO` | `ChuckMcSneed/FLUX.1-dev` | Flux base repo |
| `PYTHON_GRPC_MAX_WORKERS` | `1` | Max gRPC workers |
## Running Tests
```bash
./test.sh
```
The test suite includes:
- Unit tests for the dynamic loader (`test_dynamic_loader.py`)
- Integration tests for the gRPC backend (`test.py`)

View File

@@ -1,4 +1,10 @@
#!/usr/bin/env python3
"""
LocalAI Diffusers Backend
This backend provides gRPC access to diffusers pipelines with dynamic pipeline loading.
New pipelines added to diffusers become available automatically without code changes.
"""
from concurrent import futures
import traceback
import argparse
@@ -17,14 +23,22 @@ import backend_pb2_grpc
import grpc
from diffusers import SanaPipeline, StableDiffusion3Pipeline, StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, \
EulerAncestralDiscreteScheduler, FluxPipeline, FluxTransformer2DModel, QwenImageEditPipeline, AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline, Lumina2Text2ImgPipeline
# Import dynamic loader for pipeline discovery
from diffusers_dynamic_loader import (
get_pipeline_registry,
resolve_pipeline_class,
get_available_pipelines,
load_diffusers_pipeline,
)
# Import specific items still needed for special cases and safety checker
from diffusers import DiffusionPipeline, ControlNetModel
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKLWan
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image, export_to_video
from compel import Compel, ReturnedEmbeddingsType
from optimum.quanto import freeze, qfloat8, quantize
from transformers import CLIPTextModel, T5EncoderModel
from transformers import T5EncoderModel
from safetensors.torch import load_file
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@@ -158,6 +172,165 @@ def get_scheduler(name: str, config: dict = {}):
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def _load_pipeline(self, request, modelFile, fromSingleFile, torchType, variant):
"""
Load a diffusers pipeline dynamically using the dynamic loader.
This method uses load_diffusers_pipeline() for most pipelines, falling back
to explicit handling only for pipelines requiring custom initialization
(e.g., quantization, special VAE handling).
Args:
request: The gRPC request containing pipeline configuration
modelFile: Path to the model file (for single file loading)
fromSingleFile: Whether to use from_single_file() vs from_pretrained()
torchType: The torch dtype to use
variant: Model variant (e.g., "fp16")
Returns:
The loaded pipeline instance
"""
pipeline_type = request.PipelineType
# Handle IMG2IMG request flag with default pipeline
if request.IMG2IMG and pipeline_type == "":
pipeline_type = "StableDiffusionImg2ImgPipeline"
# ================================================================
# Special cases requiring custom initialization logic
# Only handle pipelines that truly need custom code (quantization,
# special VAE handling, etc.). All other pipelines use dynamic loading.
# ================================================================
# FluxTransformer2DModel - requires quantization and custom transformer loading
if pipeline_type == "FluxTransformer2DModel":
dtype = torch.bfloat16
bfl_repo = os.environ.get("BFL_REPO", "ChuckMcSneed/FLUX.1-dev")
transformer = FluxTransformer2DModel.from_single_file(modelFile, torch_dtype=dtype)
quantize(transformer, weights=qfloat8)
freeze(transformer)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
if request.LowVRAM:
pipe.enable_model_cpu_offload()
return pipe
# WanPipeline - requires special VAE with float32 dtype
if pipeline_type == "WanPipeline":
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
pipe = load_diffusers_pipeline(
class_name="WanPipeline",
model_id=request.Model,
vae=vae,
torch_dtype=torchType
)
self.txt2vid = True
return pipe
# WanImageToVideoPipeline - requires special VAE with float32 dtype
if pipeline_type == "WanImageToVideoPipeline":
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
pipe = load_diffusers_pipeline(
class_name="WanImageToVideoPipeline",
model_id=request.Model,
vae=vae,
torch_dtype=torchType
)
self.img2vid = True
return pipe
# SanaPipeline - requires special VAE and text encoder dtype conversion
if pipeline_type == "SanaPipeline":
pipe = load_diffusers_pipeline(
class_name="SanaPipeline",
model_id=request.Model,
variant="bf16",
torch_dtype=torch.bfloat16
)
pipe.vae.to(torch.bfloat16)
pipe.text_encoder.to(torch.bfloat16)
return pipe
# VideoDiffusionPipeline - alias for DiffusionPipeline with txt2vid flag
if pipeline_type == "VideoDiffusionPipeline":
self.txt2vid = True
pipe = load_diffusers_pipeline(
class_name="DiffusionPipeline",
model_id=request.Model,
torch_dtype=torchType
)
return pipe
# StableVideoDiffusionPipeline - needs img2vid flag and CPU offload
if pipeline_type == "StableVideoDiffusionPipeline":
self.img2vid = True
pipe = load_diffusers_pipeline(
class_name="StableVideoDiffusionPipeline",
model_id=request.Model,
torch_dtype=torchType,
variant=variant
)
if not DISABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# ================================================================
# Dynamic pipeline loading - the default path for most pipelines
# Uses the dynamic loader to instantiate any pipeline by class name
# ================================================================
# Build kwargs for dynamic loading
load_kwargs = {"torch_dtype": torchType}
# Add variant if not loading from single file
if not fromSingleFile and variant:
load_kwargs["variant"] = variant
# Add use_safetensors for from_pretrained
if not fromSingleFile:
load_kwargs["use_safetensors"] = SAFETENSORS
# Determine pipeline class name - default to AutoPipelineForText2Image
effective_pipeline_type = pipeline_type if pipeline_type else "AutoPipelineForText2Image"
# Use dynamic loader for all pipelines
try:
pipe = load_diffusers_pipeline(
class_name=effective_pipeline_type,
model_id=modelFile if fromSingleFile else request.Model,
from_single_file=fromSingleFile,
**load_kwargs
)
except Exception as e:
# Provide helpful error with available pipelines
available = get_available_pipelines()
raise ValueError(
f"Failed to load pipeline '{effective_pipeline_type}': {e}\n"
f"Available pipelines: {', '.join(available[:30])}..."
) from e
# Apply LowVRAM optimization if supported and requested
if request.LowVRAM and hasattr(pipe, 'enable_model_cpu_offload'):
pipe.enable_model_cpu_offload()
return pipe
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
@@ -231,139 +404,16 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
self.img2vid = False
self.txt2vid = False
## img2img
if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""):
if fromSingleFile:
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
torch_dtype=torchType)
else:
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "StableDiffusionDepth2ImgPipeline":
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
## img2vid
elif request.PipelineType == "StableVideoDiffusionPipeline":
self.img2vid = True
self.pipe = StableVideoDiffusionPipeline.from_pretrained(
request.Model, torch_dtype=torchType, variant=variant
)
if not DISABLE_CPU_OFFLOAD:
self.pipe.enable_model_cpu_offload()
## text2img
elif request.PipelineType == "AutoPipelineForText2Image" or request.PipelineType == "":
self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model,
torch_dtype=torchType,
use_safetensors=SAFETENSORS,
variant=variant)
elif request.PipelineType == "StableDiffusionPipeline":
if fromSingleFile:
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType)
else:
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "DiffusionPipeline":
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "QwenImageEditPipeline":
self.pipe = QwenImageEditPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "VideoDiffusionPipeline":
self.txt2vid = True
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "StableDiffusionXLPipeline":
if fromSingleFile:
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
torch_dtype=torchType,
use_safetensors=True)
else:
self.pipe = StableDiffusionXLPipeline.from_pretrained(
request.Model,
torch_dtype=torchType,
use_safetensors=True,
variant=variant)
elif request.PipelineType == "StableDiffusion3Pipeline":
if fromSingleFile:
self.pipe = StableDiffusion3Pipeline.from_single_file(modelFile,
torch_dtype=torchType,
use_safetensors=True)
else:
self.pipe = StableDiffusion3Pipeline.from_pretrained(
request.Model,
torch_dtype=torchType,
use_safetensors=True,
variant=variant)
elif request.PipelineType == "FluxPipeline":
if fromSingleFile:
self.pipe = FluxPipeline.from_single_file(modelFile,
torch_dtype=torchType,
use_safetensors=True)
else:
self.pipe = FluxPipeline.from_pretrained(
request.Model,
torch_dtype=torch.bfloat16)
if request.LowVRAM:
self.pipe.enable_model_cpu_offload()
elif request.PipelineType == "FluxTransformer2DModel":
dtype = torch.bfloat16
# specify from environment or default to "ChuckMcSneed/FLUX.1-dev"
bfl_repo = os.environ.get("BFL_REPO", "ChuckMcSneed/FLUX.1-dev")
transformer = FluxTransformer2DModel.from_single_file(modelFile, torch_dtype=dtype)
quantize(transformer, weights=qfloat8)
freeze(transformer)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
self.pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype)
self.pipe.transformer = transformer
self.pipe.text_encoder_2 = text_encoder_2
if request.LowVRAM:
self.pipe.enable_model_cpu_offload()
elif request.PipelineType == "Lumina2Text2ImgPipeline":
self.pipe = Lumina2Text2ImgPipeline.from_pretrained(
request.Model,
torch_dtype=torch.bfloat16)
if request.LowVRAM:
self.pipe.enable_model_cpu_offload()
elif request.PipelineType == "SanaPipeline":
self.pipe = SanaPipeline.from_pretrained(
request.Model,
variant="bf16",
torch_dtype=torch.bfloat16)
self.pipe.vae.to(torch.bfloat16)
self.pipe.text_encoder.to(torch.bfloat16)
elif request.PipelineType == "WanPipeline":
# WAN2.2 pipeline requires special VAE handling
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
self.pipe = WanPipeline.from_pretrained(
request.Model,
vae=vae,
torch_dtype=torchType
)
self.txt2vid = True # WAN2.2 is a text-to-video pipeline
elif request.PipelineType == "WanImageToVideoPipeline":
# WAN2.2 image-to-video pipeline
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
self.pipe = WanImageToVideoPipeline.from_pretrained(
request.Model,
vae=vae,
torch_dtype=torchType
)
self.img2vid = True # WAN2.2 image-to-video pipeline
# Load pipeline using dynamic loader
# Special cases that require custom initialization are handled first
self.pipe = self._load_pipeline(
request=request,
modelFile=modelFile,
fromSingleFile=fromSingleFile,
torchType=torchType,
variant=variant
)
if CLIPSKIP and request.CLIPSkip != 0:
self.clip_skip = request.CLIPSkip
@@ -501,10 +551,12 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# create a dictionary of values for the parameters
options = {
"negative_prompt": request.negative_prompt,
"num_inference_steps": steps,
}
if hasattr(request, 'negative_prompt') and request.negative_prompt != "":
options["negative_prompt"] = request.negative_prompt
# Handle image source: prioritize RefImages over request.src
image_src = None
if hasattr(request, 'ref_images') and request.ref_images and len(request.ref_images) > 0:
@@ -528,17 +580,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if CLIPSKIP and self.clip_skip != 0:
options["clip_skip"] = self.clip_skip
# Get the keys that we will build the args for our pipe for
keys = options.keys()
if request.EnableParameters != "":
keys = [key.strip() for key in request.EnableParameters.split(",")]
if request.EnableParameters == "none":
keys = []
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
kwargs = {key: options.get(key) for key in keys if key in options}
kwargs = {}
# populate kwargs from self.options.
kwargs.update(self.options)

View File

@@ -0,0 +1,538 @@
"""
Dynamic Diffusers Pipeline Loader
This module provides dynamic discovery and loading of diffusers pipelines at runtime,
eliminating the need for per-pipeline conditional statements. New pipelines added to
diffusers become available automatically without code changes.
The module also supports discovering other diffusers classes like schedulers, models,
and other components, making it a generic solution for dynamic class loading.
Usage:
from diffusers_dynamic_loader import load_diffusers_pipeline, get_available_pipelines
# Load by class name
pipe = load_diffusers_pipeline(class_name="StableDiffusionPipeline", model_id="...", torch_dtype=torch.float16)
# Load by task alias
pipe = load_diffusers_pipeline(task="text-to-image", model_id="...", torch_dtype=torch.float16)
# Load using model_id (infers from HuggingFace Hub if possible)
pipe = load_diffusers_pipeline(model_id="runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
# Get list of available pipelines
available = get_available_pipelines()
# Discover other diffusers classes (schedulers, models, etc.)
schedulers = discover_diffusers_classes("SchedulerMixin")
models = discover_diffusers_classes("ModelMixin")
"""
import importlib
import re
import sys
from typing import Any, Dict, List, Optional, Tuple, Type
# Global cache for discovered pipelines - computed once per process
_pipeline_registry: Optional[Dict[str, Type]] = None
_task_aliases: Optional[Dict[str, List[str]]] = None
# Global cache for other discovered class types
_class_registries: Dict[str, Dict[str, Type]] = {}
def _camel_to_kebab(name: str) -> str:
"""
Convert CamelCase to kebab-case.
Examples:
StableDiffusionPipeline -> stable-diffusion-pipeline
StableDiffusionXLImg2ImgPipeline -> stable-diffusion-xl-img-2-img-pipeline
"""
# Insert hyphen before uppercase letters (but not at the start)
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1-\2', name)
# Insert hyphen before uppercase letters following lowercase letters or numbers
s2 = re.sub('([a-z0-9])([A-Z])', r'\1-\2', s1)
return s2.lower()
def _extract_task_keywords(class_name: str) -> List[str]:
"""
Extract task-related keywords from a pipeline class name.
This function derives useful task aliases from the class name without
hardcoding per-pipeline branches.
Returns a list of potential task aliases for this pipeline.
"""
aliases = []
name_lower = class_name.lower()
# Direct task mappings based on common patterns in class names
task_patterns = {
'text2image': ['text-to-image', 'txt2img', 'text2image'],
'texttoimage': ['text-to-image', 'txt2img', 'text2image'],
'txt2img': ['text-to-image', 'txt2img', 'text2image'],
'img2img': ['image-to-image', 'img2img', 'image2image'],
'image2image': ['image-to-image', 'img2img', 'image2image'],
'imagetoimage': ['image-to-image', 'img2img', 'image2image'],
'img2video': ['image-to-video', 'img2vid', 'img2video'],
'imagetovideo': ['image-to-video', 'img2vid', 'img2video'],
'text2video': ['text-to-video', 'txt2vid', 'text2video'],
'texttovideo': ['text-to-video', 'txt2vid', 'text2video'],
'inpaint': ['inpainting', 'inpaint'],
'depth2img': ['depth-to-image', 'depth2img'],
'depthtoimage': ['depth-to-image', 'depth2img'],
'controlnet': ['controlnet', 'control-net'],
'upscale': ['upscaling', 'upscale', 'super-resolution'],
'superresolution': ['upscaling', 'upscale', 'super-resolution'],
}
# Check for each pattern in the class name
for pattern, task_aliases in task_patterns.items():
if pattern in name_lower:
aliases.extend(task_aliases)
# Also detect general pipeline types from the class name structure
# E.g., StableDiffusionPipeline -> stable-diffusion, flux -> flux
# Remove "Pipeline" suffix and convert to kebab case
if class_name.endswith('Pipeline'):
base_name = class_name[:-8] # Remove "Pipeline"
kebab_name = _camel_to_kebab(base_name)
aliases.append(kebab_name)
# Extract model family name (e.g., "stable-diffusion" from "stable-diffusion-xl-img-2-img")
parts = kebab_name.split('-')
if len(parts) >= 2:
# Try the first two words as a family name
family = '-'.join(parts[:2])
if family not in aliases:
aliases.append(family)
# If no specific task pattern matched but class contains "Pipeline", add "text-to-image" as default
# since most diffusion pipelines support text-to-image generation
if 'text-to-image' not in aliases and 'image-to-image' not in aliases:
# Only add for pipelines that seem to be generation pipelines (not schedulers, etc.)
if 'pipeline' in name_lower and not any(x in name_lower for x in ['scheduler', 'processor', 'encoder']):
# Don't automatically add - let it be explicit
pass
return list(set(aliases)) # Remove duplicates
def discover_diffusers_classes(
base_class_name: str,
include_base: bool = True
) -> Dict[str, Type]:
"""
Discover all subclasses of a given base class from diffusers.
This function provides a generic way to discover any type of diffusers class,
not just pipelines. It can be used to discover schedulers, models, processors,
and other components.
Args:
base_class_name: Name of the base class to search for subclasses
(e.g., "DiffusionPipeline", "SchedulerMixin", "ModelMixin")
include_base: Whether to include the base class itself in results
Returns:
Dict mapping class names to class objects
Examples:
# Discover all pipeline classes
pipelines = discover_diffusers_classes("DiffusionPipeline")
# Discover all scheduler classes
schedulers = discover_diffusers_classes("SchedulerMixin")
# Discover all model classes
models = discover_diffusers_classes("ModelMixin")
# Discover AutoPipeline classes
auto_pipelines = discover_diffusers_classes("AutoPipelineForText2Image")
"""
global _class_registries
# Check cache first
if base_class_name in _class_registries:
return _class_registries[base_class_name]
import diffusers
# Try to get the base class from diffusers
base_class = None
try:
base_class = getattr(diffusers, base_class_name)
except AttributeError:
# Try to find in submodules
for submodule in ['schedulers', 'models', 'pipelines']:
try:
module = importlib.import_module(f'diffusers.{submodule}')
if hasattr(module, base_class_name):
base_class = getattr(module, base_class_name)
break
except (ImportError, ModuleNotFoundError):
continue
if base_class is None:
raise ValueError(f"Could not find base class '{base_class_name}' in diffusers")
registry: Dict[str, Type] = {}
# Include base class if requested
if include_base:
registry[base_class_name] = base_class
# Scan diffusers module for subclasses
for attr_name in dir(diffusers):
try:
attr = getattr(diffusers, attr_name)
if (isinstance(attr, type) and
issubclass(attr, base_class) and
(include_base or attr is not base_class)):
registry[attr_name] = attr
except (ImportError, AttributeError, TypeError, RuntimeError, ModuleNotFoundError):
continue
# Cache the results
_class_registries[base_class_name] = registry
return registry
def get_available_classes(base_class_name: str) -> List[str]:
"""
Get a sorted list of all discovered class names for a given base class.
Args:
base_class_name: Name of the base class (e.g., "SchedulerMixin")
Returns:
Sorted list of discovered class names
"""
return sorted(discover_diffusers_classes(base_class_name).keys())
def _discover_pipelines() -> Tuple[Dict[str, Type], Dict[str, List[str]]]:
"""
Discover all subclasses of DiffusionPipeline from diffusers.
This function uses the generic discover_diffusers_classes() internally
and adds pipeline-specific task alias generation. It also includes
AutoPipeline classes which are special utility classes for automatic
pipeline selection.
Returns:
A tuple of (pipeline_registry, task_aliases) where:
- pipeline_registry: Dict mapping class names to class objects
- task_aliases: Dict mapping task aliases to lists of class names
"""
# Use the generic discovery function
pipeline_registry = discover_diffusers_classes("DiffusionPipeline", include_base=True)
# Also add AutoPipeline classes - these are special utility classes that are
# NOT subclasses of DiffusionPipeline but are commonly used
import diffusers
auto_pipeline_classes = [
"AutoPipelineForText2Image",
"AutoPipelineForImage2Image",
"AutoPipelineForInpainting",
]
for cls_name in auto_pipeline_classes:
try:
cls = getattr(diffusers, cls_name)
if cls is not None:
pipeline_registry[cls_name] = cls
except AttributeError:
# Class not available in this version of diffusers
pass
# Generate task aliases for pipelines
task_aliases: Dict[str, List[str]] = {}
for attr_name in pipeline_registry:
if attr_name == "DiffusionPipeline":
continue # Skip base class for alias generation
aliases = _extract_task_keywords(attr_name)
for alias in aliases:
if alias not in task_aliases:
task_aliases[alias] = []
if attr_name not in task_aliases[alias]:
task_aliases[alias].append(attr_name)
return pipeline_registry, task_aliases
def get_pipeline_registry() -> Dict[str, Type]:
"""
Get the cached pipeline registry.
Returns a dictionary mapping pipeline class names to their class objects.
The registry is built on first access and cached for subsequent calls.
"""
global _pipeline_registry, _task_aliases
if _pipeline_registry is None:
_pipeline_registry, _task_aliases = _discover_pipelines()
return _pipeline_registry
def get_task_aliases() -> Dict[str, List[str]]:
"""
Get the cached task aliases dictionary.
Returns a dictionary mapping task aliases (e.g., "text-to-image") to
lists of pipeline class names that support that task.
"""
global _pipeline_registry, _task_aliases
if _task_aliases is None:
_pipeline_registry, _task_aliases = _discover_pipelines()
return _task_aliases
def get_available_pipelines() -> List[str]:
"""
Get a sorted list of all discovered pipeline class names.
Returns:
List of pipeline class names available for loading.
"""
return sorted(get_pipeline_registry().keys())
def get_available_tasks() -> List[str]:
"""
Get a sorted list of all available task aliases.
Returns:
List of task aliases (e.g., ["text-to-image", "image-to-image", ...])
"""
return sorted(get_task_aliases().keys())
def resolve_pipeline_class(
class_name: Optional[str] = None,
task: Optional[str] = None,
model_id: Optional[str] = None
) -> Type:
"""
Resolve a pipeline class from class_name, task, or model_id.
Priority:
1. If class_name is provided, look it up directly
2. If task is provided, resolve through task aliases
3. If model_id is provided, try to infer from HuggingFace Hub
Args:
class_name: Exact pipeline class name (e.g., "StableDiffusionPipeline")
task: Task alias (e.g., "text-to-image", "img2img")
model_id: HuggingFace model ID (e.g., "runwayml/stable-diffusion-v1-5")
Returns:
The resolved pipeline class.
Raises:
ValueError: If no pipeline could be resolved.
"""
registry = get_pipeline_registry()
aliases = get_task_aliases()
# 1. Direct class name lookup
if class_name:
if class_name in registry:
return registry[class_name]
# Try case-insensitive match
for name, cls in registry.items():
if name.lower() == class_name.lower():
return cls
raise ValueError(
f"Unknown pipeline class '{class_name}'. "
f"Available pipelines: {', '.join(sorted(registry.keys())[:20])}..."
)
# 2. Task alias lookup
if task:
task_lower = task.lower().replace('_', '-')
if task_lower in aliases:
# Return the first matching pipeline for this task
matching_classes = aliases[task_lower]
if matching_classes:
return registry[matching_classes[0]]
# Try partial matching
for alias, classes in aliases.items():
if task_lower in alias or alias in task_lower:
if classes:
return registry[classes[0]]
raise ValueError(
f"Unknown task '{task}'. "
f"Available tasks: {', '.join(sorted(aliases.keys())[:20])}..."
)
# 3. Try to infer from HuggingFace Hub
if model_id:
try:
from huggingface_hub import model_info
info = model_info(model_id)
# Check pipeline_tag
if hasattr(info, 'pipeline_tag') and info.pipeline_tag:
tag = info.pipeline_tag.lower().replace('_', '-')
if tag in aliases:
matching_classes = aliases[tag]
if matching_classes:
return registry[matching_classes[0]]
# Check model card for hints
if hasattr(info, 'cardData') and info.cardData:
card = info.cardData
if 'pipeline_tag' in card:
tag = card['pipeline_tag'].lower().replace('_', '-')
if tag in aliases:
matching_classes = aliases[tag]
if matching_classes:
return registry[matching_classes[0]]
except ImportError:
# huggingface_hub not available
pass
except (KeyError, AttributeError, ValueError, OSError):
# Model info lookup failed - common cases:
# - KeyError: Missing keys in model card
# - AttributeError: Missing attributes on model info
# - ValueError: Invalid model data
# - OSError: Network or file access issues
pass
# Fallback: use DiffusionPipeline.from_pretrained which auto-detects
# DiffusionPipeline is always added to registry in _discover_pipelines (line 132)
# but use .get() with import fallback for extra safety
from diffusers import DiffusionPipeline
return registry.get('DiffusionPipeline', DiffusionPipeline)
raise ValueError(
"Must provide at least one of: class_name, task, or model_id. "
f"Available pipelines: {', '.join(sorted(registry.keys())[:20])}... "
f"Available tasks: {', '.join(sorted(aliases.keys())[:20])}..."
)
def load_diffusers_pipeline(
class_name: Optional[str] = None,
task: Optional[str] = None,
model_id: Optional[str] = None,
from_single_file: bool = False,
**kwargs
) -> Any:
"""
Load a diffusers pipeline dynamically.
This function resolves the appropriate pipeline class based on the provided
parameters and instantiates it with the given kwargs.
Args:
class_name: Exact pipeline class name (e.g., "StableDiffusionPipeline")
task: Task alias (e.g., "text-to-image", "img2img")
model_id: HuggingFace model ID or local path
from_single_file: If True, use from_single_file() instead of from_pretrained()
**kwargs: Additional arguments passed to from_pretrained() or from_single_file()
Returns:
An instantiated pipeline object.
Raises:
ValueError: If no pipeline could be resolved.
Exception: If pipeline loading fails.
Examples:
# Load by class name
pipe = load_diffusers_pipeline(
class_name="StableDiffusionPipeline",
model_id="runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16
)
# Load by task
pipe = load_diffusers_pipeline(
task="text-to-image",
model_id="runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16
)
# Load from single file
pipe = load_diffusers_pipeline(
class_name="StableDiffusionPipeline",
model_id="/path/to/model.safetensors",
from_single_file=True,
torch_dtype=torch.float16
)
"""
# Resolve the pipeline class
pipeline_class = resolve_pipeline_class(
class_name=class_name,
task=task,
model_id=model_id
)
# If no model_id provided but we have a class, we can't load
if model_id is None:
raise ValueError("model_id is required to load a pipeline")
# Load the pipeline
try:
if from_single_file:
# Check if the class has from_single_file method
if hasattr(pipeline_class, 'from_single_file'):
return pipeline_class.from_single_file(model_id, **kwargs)
else:
raise ValueError(
f"Pipeline class {pipeline_class.__name__} does not support from_single_file(). "
f"Use from_pretrained() instead."
)
else:
return pipeline_class.from_pretrained(model_id, **kwargs)
except Exception as e:
# Provide helpful error message
available = get_available_pipelines()
raise RuntimeError(
f"Failed to load pipeline '{pipeline_class.__name__}' from '{model_id}': {e}\n"
f"Available pipelines: {', '.join(available[:20])}..."
) from e
def get_pipeline_info(class_name: str) -> Dict[str, Any]:
"""
Get information about a specific pipeline class.
Args:
class_name: The pipeline class name
Returns:
Dictionary with pipeline information including:
- name: Class name
- aliases: List of task aliases
- supports_single_file: Whether from_single_file() is available
- docstring: Class docstring (if available)
"""
registry = get_pipeline_registry()
aliases = get_task_aliases()
if class_name not in registry:
raise ValueError(f"Unknown pipeline: {class_name}")
cls = registry[class_name]
# Find all aliases for this pipeline
pipeline_aliases = []
for alias, classes in aliases.items():
if class_name in classes:
pipeline_aliases.append(alias)
return {
'name': class_name,
'aliases': pipeline_aliases,
'supports_single_file': hasattr(cls, 'from_single_file'),
'docstring': cls.__doc__[:200] if cls.__doc__ else None
}

View File

@@ -1,15 +1,26 @@
"""
A test script to test the gRPC service
A test script to test the gRPC service and dynamic loader
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
from unittest.mock import patch, MagicMock
import grpc
# Import dynamic loader for testing (these don't need gRPC)
import diffusers_dynamic_loader as loader
from diffusers import DiffusionPipeline, StableDiffusionPipeline
# Try to import gRPC modules - may not be available during unit testing
try:
import grpc
import backend_pb2
import backend_pb2_grpc
GRPC_AVAILABLE = True
except ImportError:
GRPC_AVAILABLE = False
@unittest.skipUnless(GRPC_AVAILABLE, "gRPC modules not available")
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
@@ -82,3 +93,222 @@ class TestBackendServicer(unittest.TestCase):
self.fail("Image gen service failed")
finally:
self.tearDown()
class TestDiffusersDynamicLoader(unittest.TestCase):
"""Test cases for the diffusers dynamic loader functionality."""
@classmethod
def setUpClass(cls):
"""Set up test fixtures - clear caches to ensure fresh discovery."""
# Reset the caches to ensure fresh discovery
loader._pipeline_registry = None
loader._task_aliases = None
def test_camel_to_kebab_conversion(self):
"""Test CamelCase to kebab-case conversion."""
test_cases = [
("StableDiffusionPipeline", "stable-diffusion-pipeline"),
("StableDiffusionXLPipeline", "stable-diffusion-xl-pipeline"),
("FluxPipeline", "flux-pipeline"),
("DiffusionPipeline", "diffusion-pipeline"),
]
for input_val, expected in test_cases:
with self.subTest(input=input_val):
result = loader._camel_to_kebab(input_val)
self.assertEqual(result, expected)
def test_extract_task_keywords(self):
"""Test task keyword extraction from class names."""
# Test text-to-image detection
aliases = loader._extract_task_keywords("StableDiffusionPipeline")
self.assertIn("stable-diffusion", aliases)
# Test img2img detection
aliases = loader._extract_task_keywords("StableDiffusionImg2ImgPipeline")
self.assertIn("image-to-image", aliases)
self.assertIn("img2img", aliases)
# Test inpainting detection
aliases = loader._extract_task_keywords("StableDiffusionInpaintPipeline")
self.assertIn("inpainting", aliases)
self.assertIn("inpaint", aliases)
# Test depth2img detection
aliases = loader._extract_task_keywords("StableDiffusionDepth2ImgPipeline")
self.assertIn("depth-to-image", aliases)
def test_discover_pipelines_finds_known_classes(self):
"""Test that pipeline discovery finds at least one known pipeline class."""
registry = loader.get_pipeline_registry()
# Check that the registry is not empty
self.assertGreater(len(registry), 0, "Pipeline registry should not be empty")
# Check for known pipeline classes
known_pipelines = [
"StableDiffusionPipeline",
"DiffusionPipeline",
]
for pipeline_name in known_pipelines:
with self.subTest(pipeline=pipeline_name):
self.assertIn(
pipeline_name,
registry,
f"Expected to find {pipeline_name} in registry"
)
def test_discover_pipelines_caches_results(self):
"""Test that pipeline discovery results are cached."""
# Get registry twice
registry1 = loader.get_pipeline_registry()
registry2 = loader.get_pipeline_registry()
# Should be the same object (cached)
self.assertIs(registry1, registry2, "Registry should be cached")
def test_get_available_pipelines(self):
"""Test getting list of available pipelines."""
available = loader.get_available_pipelines()
# Should return a list
self.assertIsInstance(available, list)
# Should contain known pipelines
self.assertIn("StableDiffusionPipeline", available)
self.assertIn("DiffusionPipeline", available)
# Should be sorted
self.assertEqual(available, sorted(available))
def test_get_available_tasks(self):
"""Test getting list of available task aliases."""
tasks = loader.get_available_tasks()
# Should return a list
self.assertIsInstance(tasks, list)
# Should be sorted
self.assertEqual(tasks, sorted(tasks))
def test_resolve_pipeline_class_by_name(self):
"""Test resolving pipeline class by exact name."""
cls = loader.resolve_pipeline_class(class_name="StableDiffusionPipeline")
self.assertEqual(cls, StableDiffusionPipeline)
def test_resolve_pipeline_class_by_name_case_insensitive(self):
"""Test that class name resolution is case-insensitive."""
cls1 = loader.resolve_pipeline_class(class_name="StableDiffusionPipeline")
cls2 = loader.resolve_pipeline_class(class_name="stablediffusionpipeline")
self.assertEqual(cls1, cls2)
def test_resolve_pipeline_class_by_task(self):
"""Test resolving pipeline class by task alias."""
# Get the registry to find available tasks
aliases = loader.get_task_aliases()
# Test with a common task that should be available
if "stable-diffusion" in aliases:
cls = loader.resolve_pipeline_class(task="stable-diffusion")
self.assertIsNotNone(cls)
def test_resolve_pipeline_class_unknown_name_raises(self):
"""Test that resolving unknown class name raises ValueError with helpful message."""
with self.assertRaises(ValueError) as ctx:
loader.resolve_pipeline_class(class_name="NonExistentPipeline")
# Check that error message includes available pipelines
error_msg = str(ctx.exception)
self.assertIn("Unknown pipeline class", error_msg)
self.assertIn("Available pipelines", error_msg)
def test_resolve_pipeline_class_unknown_task_raises(self):
"""Test that resolving unknown task raises ValueError with helpful message."""
with self.assertRaises(ValueError) as ctx:
loader.resolve_pipeline_class(task="nonexistent-task-xyz")
# Check that error message includes available tasks
error_msg = str(ctx.exception)
self.assertIn("Unknown task", error_msg)
self.assertIn("Available tasks", error_msg)
def test_resolve_pipeline_class_no_params_raises(self):
"""Test that calling with no parameters raises helpful ValueError."""
with self.assertRaises(ValueError) as ctx:
loader.resolve_pipeline_class()
error_msg = str(ctx.exception)
self.assertIn("Must provide at least one of", error_msg)
def test_get_pipeline_info(self):
"""Test getting pipeline information."""
info = loader.get_pipeline_info("StableDiffusionPipeline")
self.assertEqual(info['name'], "StableDiffusionPipeline")
self.assertIsInstance(info['aliases'], list)
self.assertIsInstance(info['supports_single_file'], bool)
def test_get_pipeline_info_unknown_raises(self):
"""Test that getting info for unknown pipeline raises ValueError."""
with self.assertRaises(ValueError) as ctx:
loader.get_pipeline_info("NonExistentPipeline")
self.assertIn("Unknown pipeline", str(ctx.exception))
def test_discover_diffusers_classes_pipelines(self):
"""Test generic class discovery for DiffusionPipeline."""
classes = loader.discover_diffusers_classes("DiffusionPipeline")
# Should return a dict
self.assertIsInstance(classes, dict)
# Should contain known pipeline classes
self.assertIn("DiffusionPipeline", classes)
self.assertIn("StableDiffusionPipeline", classes)
def test_discover_diffusers_classes_caches_results(self):
"""Test that class discovery results are cached."""
classes1 = loader.discover_diffusers_classes("DiffusionPipeline")
classes2 = loader.discover_diffusers_classes("DiffusionPipeline")
# Should be the same object (cached)
self.assertIs(classes1, classes2)
def test_discover_diffusers_classes_exclude_base(self):
"""Test discovering classes without base class."""
classes = loader.discover_diffusers_classes("DiffusionPipeline", include_base=False)
# Should still contain subclasses
self.assertIn("StableDiffusionPipeline", classes)
def test_get_available_classes(self):
"""Test getting list of available classes for a base class."""
classes = loader.get_available_classes("DiffusionPipeline")
# Should return a sorted list
self.assertIsInstance(classes, list)
self.assertEqual(classes, sorted(classes))
# Should contain known classes
self.assertIn("StableDiffusionPipeline", classes)
class TestDiffusersDynamicLoaderWithMocks(unittest.TestCase):
"""Test cases using mocks to test edge cases."""
def test_load_pipeline_requires_model_id(self):
"""Test that load_diffusers_pipeline requires model_id."""
with self.assertRaises(ValueError) as ctx:
loader.load_diffusers_pipeline(class_name="StableDiffusionPipeline")
self.assertIn("model_id is required", str(ctx.exception))
def test_resolve_with_model_id_uses_diffusion_pipeline_fallback(self):
"""Test that resolving with only model_id falls back to DiffusionPipeline."""
# When model_id is provided, if hub lookup is not successful,
# should fall back to DiffusionPipeline.
# This tests the fallback behavior - the actual hub lookup may succeed
# or fail depending on network, but the fallback path should work.
cls = loader.resolve_pipeline_class(model_id="some/nonexistent/model")
self.assertEqual(cls, DiffusionPipeline)