feat(mlx): add mlx backend (#6049)

* chore: allow to install with pip

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* WIP

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Make the backend to build and actually work

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* List models from system only

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add script to build darwin python backends

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Run protogen in libbackend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Detect if mps is available across python backends

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* CI: try to build backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Debug CI

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Index mlx-vlm

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Remove mlx-vlm

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Drop CI test

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto
2025-08-22 08:42:29 +02:00
committed by GitHub
parent 6dccfb09f8
commit 1d830ce7dd
38 changed files with 926 additions and 211 deletions

View File

@@ -1,29 +1,23 @@
.PHONY: ttsbark
ttsbark: protogen
ttsbark:
bash install.sh
.PHONY: run
run: protogen
run: ttsbark
@echo "Running bark..."
bash run.sh
@echo "bark run."
.PHONY: test
test: protogen
test: ttsbark
@echo "Testing bark..."
bash test.sh
@echo "bark tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,29 +1,23 @@
.PHONY: coqui
coqui: protogen
.PHONY: chatterbox
chatterbox:
bash install.sh
.PHONY: run
run: protogen
run: chatterbox
@echo "Running coqui..."
bash run.sh
@echo "coqui run."
.PHONY: test
test: protogen
test: chatterbox
@echo "Testing coqui..."
bash test.sh
@echo "coqui tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -41,7 +41,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")

View File

@@ -17,8 +17,16 @@
# LIMIT_TARGETS="cublas12"
# source $(dirname $0)/../common/libbackend.sh
#
# You can switch between uv (conda-like) and pip installation methods by setting USE_PIP:
# USE_PIP=true source $(dirname $0)/../common/libbackend.sh
#
PYTHON_VERSION="3.10"
PYTHON_VERSION="${PYTHON_VERSION:-3.10}"
# Default to uv if USE_PIP is not set
if [ "x${USE_PIP}" == "x" ]; then
USE_PIP=false
fi
function init() {
# Name of the backend (directory name)
@@ -57,11 +65,6 @@ function init() {
# - hipblas
# - intel
function getBuildProfile() {
if [ "x${BUILD_TYPE}" == "xl4t" ]; then
echo "l4t"
return 0
fi
# First check if we are a cublas build, and if so report the correct build profile
if [ x"${BUILD_TYPE}" == "xcublas" ]; then
if [ ! -z ${CUDA_MAJOR_VERSION} ]; then
@@ -81,7 +84,7 @@ function getBuildProfile() {
fi
# If for any other values of BUILD_TYPE, we don't need any special handling/discovery
if [ ! -z ${BUILD_TYPE} ]; then
if [ -n ${BUILD_TYPE} ]; then
echo ${BUILD_TYPE}
return 0
fi
@@ -95,18 +98,48 @@ function getBuildProfile() {
# This function is idempotent, so you can call it as many times as you want and it will
# always result in an activated virtual environment
function ensureVenv() {
if [ ! -d "${EDIR}/venv" ]; then
uv venv --python ${PYTHON_VERSION} ${EDIR}/venv
echo "virtualenv created"
fi
if [ ! -d "${EDIR}/venv" ]; then
if [ "x${USE_PIP}" == "xtrue" ]; then
echo "Using pip and Python virtual environments"
# Use Python virtual environment with pip
interpreter="python3"
# if there is no python , call python${PYTHON_VERSION}
if command -v python${PYTHON_VERSION} &> /dev/null; then
interpreter="python${PYTHON_VERSION}"
fi
echo "Using interpreter: ${interpreter}"
${interpreter} -m venv ${EDIR}/venv
source ${EDIR}/venv/bin/activate
${interpreter} -m pip install --upgrade pip
echo "Python virtual environment created"
else
echo "Using uv package manager"
uv venv --python ${PYTHON_VERSION} ${EDIR}/venv
echo "uv virtual environment created"
fi
fi
# Source if we are not already in a Virtual env
if [ "x${VIRTUAL_ENV}" != "x${EDIR}/venv" ]; then
source ${EDIR}/venv/bin/activate
echo "virtualenv activated"
echo "Python virtual environment activated"
fi
echo "activated virtualenv has been ensured"
echo "activated virtual environment has been ensured"
}
function runProtogen() {
ensureVenv
if [ "x${USE_PIP}" == "xtrue" ]; then
pip install grpcio-tools
else
uv pip install grpcio-tools
fi
pushd ${EDIR}
python3 -m grpc_tools.protoc -I../../ -I./ --python_out=. --grpc_python_out=. backend.proto
popd
}
# installRequirements looks for several requirements files and if they exist runs the install for them in order
@@ -116,7 +149,7 @@ function ensureVenv() {
# - requirements-${BUILD_TYPE}.txt
# - requirements-${BUILD_PROFILE}.txt
#
# BUILD_PROFILE is a pore specific version of BUILD_TYPE, ex: cuda-11 or cuda-12
# BUILD_PROFILE is a more specific version of BUILD_TYPE, ex: cuda-11 or cuda-12
# it can also include some options that we do not have BUILD_TYPES for, ex: intel
#
# NOTE: for BUILD_PROFILE==intel, this function does NOT automatically use the Intel python package index.
@@ -158,10 +191,18 @@ function installRequirements() {
for reqFile in ${requirementFiles[@]}; do
if [ -f ${reqFile} ]; then
echo "starting requirements install for ${reqFile}"
uv pip install ${EXTRA_PIP_INSTALL_FLAGS} --requirement ${reqFile}
if [ "x${USE_PIP}" == "xtrue" ]; then
# Use pip for installation
pip install ${EXTRA_PIP_INSTALL_FLAGS} --requirement ${reqFile}
else
# Use uv for installation
uv pip install ${EXTRA_PIP_INSTALL_FLAGS} --requirement ${reqFile}
fi
echo "finished requirements install for ${reqFile}"
fi
done
runProtogen
}
# startBackend discovers and runs the backend GRPC server

View File

@@ -3,18 +3,11 @@
.PHONY: install
install:
bash install.sh
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -8,6 +8,4 @@ else
source $backend_dir/../common/libbackend.sh
fi
ensureVenv
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
runProtogen

View File

@@ -1,29 +1,23 @@
.PHONY: coqui
coqui: protogen
coqui:
bash install.sh
.PHONY: run
run: protogen
run: coqui
@echo "Running coqui..."
bash run.sh
@echo "coqui run."
.PHONY: test
test: protogen
test: coqui
@echo "Testing coqui..."
bash test.sh
@echo "coqui tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -40,7 +40,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")

View File

@@ -12,28 +12,22 @@ export SKIP_CONDA=1
endif
.PHONY: diffusers
diffusers: protogen
diffusers:
bash install.sh
.PHONY: run
run: protogen
run: diffusers
@echo "Running diffusers..."
bash run.sh
@echo "Diffusers run."
test: protogen
test: diffusers
bash test.sh
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -368,6 +368,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
device = "cpu" if not request.CUDA else "cuda"
if XPU:
device = "xpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
self.device = device
if request.LoraAdapter:
# Check if its a local file and not a directory ( we load lora differently for a safetensor file )

View File

@@ -1,23 +1,17 @@
.PHONY: exllama2
exllama2: protogen
exllama2:
bash install.sh
.PHONY: run
run: protogen
run: exllama2
@echo "Running exllama2..."
bash run.sh
@echo "exllama2 run."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
$(RM) -r venv source __pycache__

View File

@@ -3,18 +3,11 @@
.PHONY: install
install:
bash install.sh
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -10,7 +10,7 @@ import sys
import os
import backend_pb2
import backend_pb2_grpc
import torch
from faster_whisper import WhisperModel
import grpc
@@ -35,7 +35,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# device = "cuda" if request.CUDA else "cpu"
if request.CUDA:
device = "cuda"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
try:
print("Preparing models, please wait", file=sys.stderr)
self.model = WhisperModel(request.Model, device=device, compute_type="float16")

View File

@@ -1,29 +1,23 @@
.PHONY: kitten-tts
kitten-tts: protogen
kitten-tts:
bash install.sh
.PHONY: run
run: protogen
run: kitten-tts
@echo "Running kitten-tts..."
bash run.sh
@echo "kitten-tts run."
.PHONY: test
test: protogen
test: kitten-tts
@echo "Testing kitten-tts..."
bash test.sh
@echo "kitten-tts tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -33,18 +33,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
# device = "cuda" if request.CUDA else "cpu"
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
self.AudioPath = None
# List available KittenTTS models
print("Available KittenTTS voices: expr-voice-2-m, expr-voice-2-f, expr-voice-3-m, expr-voice-3-f, expr-voice-4-m, expr-voice-4-f, expr-voice-5-m, expr-voice-5-f")

View File

@@ -1,29 +1,23 @@
.PHONY: kokoro
kokoro: protogen
kokoro:
bash install.sh
.PHONY: run
run: protogen
run: kokoro
@echo "Running kokoro..."
bash run.sh
@echo "kokoro run."
.PHONY: test
test: protogen
test: kokoro
@echo "Testing kokoro..."
bash test.sh
@echo "kokoro tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -33,17 +33,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
try:
print("Preparing Kokoro TTS pipeline, please wait", file=sys.stderr)
# empty dict

View File

@@ -0,0 +1,23 @@
.PHONY: mlx
mlx:
bash install.sh
.PHONY: run
run:
@echo "Running mlx..."
bash run.sh
@echo "mlx run."
.PHONY: test
test:
@echo "Testing mlx..."
bash test.sh
@echo "mlx tested."
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -0,0 +1,376 @@
#!/usr/bin/env python3
import asyncio
from concurrent import futures
import argparse
import signal
import sys
import os
from typing import List
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from mlx_lm import load, generate, stream_generate
from mlx_lm.sample_utils import make_sampler
from mlx_lm.models.cache import make_prompt_cache
import mlx.core as mx
import base64
import io
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer that implements the Backend service defined in backend.proto.
"""
def _is_float(self, s):
"""Check if a string can be converted to float."""
try:
float(s)
return True
except ValueError:
return False
def _is_int(self, s):
"""Check if a string can be converted to int."""
try:
int(s)
return True
except ValueError:
return False
def Health(self, request, context):
"""
Returns a health check message.
Args:
request: The health check request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The health check reply.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
async def LoadModel(self, request, context):
"""
Loads a language model using MLX.
Args:
request: The load model request.
context: The gRPC context.
Returns:
backend_pb2.Result: The load model result.
"""
try:
print(f"Loading MLX model: {request.Model}", file=sys.stderr)
print(f"Request: {request}", file=sys.stderr)
# Parse options like in the diffusers backend
options = request.Options
self.options = {}
# The options are a list of strings in this form optname:optvalue
# We store all the options in a dict for later use
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":", 1) # Split only on first colon to handle values with colons
# Convert numeric values to appropriate types
if self._is_float(value):
value = float(value)
elif self._is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
print(f"Options: {self.options}", file=sys.stderr)
# Build tokenizer config for MLX using options
tokenizer_config = {}
# Handle trust_remote_code from request or options
if request.TrustRemoteCode or self.options.get("trust_remote_code", False):
tokenizer_config["trust_remote_code"] = True
# Handle EOS token from options
if "eos_token" in self.options:
tokenizer_config["eos_token"] = self.options["eos_token"]
# Handle other tokenizer config options
for key in ["pad_token", "bos_token", "unk_token", "sep_token", "cls_token", "mask_token"]:
if key in self.options:
tokenizer_config[key] = self.options[key]
# Load model and tokenizer using MLX
if tokenizer_config:
print(f"Loading with tokenizer_config: {tokenizer_config}", file=sys.stderr)
self.model, self.tokenizer = load(request.Model, tokenizer_config=tokenizer_config)
else:
self.model, self.tokenizer = load(request.Model)
# Initialize prompt cache for efficient generation
max_kv_size = self.options.get("max_kv_size", None)
self.prompt_cache = make_prompt_cache(self.model, max_kv_size)
except Exception as err:
print(f"Error loading MLX model {err=}, {type(err)=}", file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Error loading MLX model: {err}")
print("MLX model loaded successfully", file=sys.stderr)
return backend_pb2.Result(message="MLX model loaded successfully", success=True)
async def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters using MLX.
Args:
request: The predict request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The predict result.
"""
try:
# Prepare the prompt
prompt = self._prepare_prompt(request)
# Build generation parameters using request attributes and options
max_tokens, sampler_params = self._build_generation_params(request)
print(f"Generating text with MLX - max_tokens: {max_tokens}, sampler_params: {sampler_params}", file=sys.stderr)
# Create sampler with parameters
sampler = make_sampler(**sampler_params)
# Generate text using MLX with proper parameters
response = generate(
self.model,
self.tokenizer,
prompt=prompt,
max_tokens=max_tokens,
sampler=sampler,
prompt_cache=self.prompt_cache,
verbose=False
)
return backend_pb2.Reply(message=bytes(response, encoding='utf-8'))
except Exception as e:
print(f"Error in MLX Predict: {e}", file=sys.stderr)
context.set_code(grpc.StatusCode.INTERNAL)
context.set_details(f"Generation failed: {str(e)}")
return backend_pb2.Reply(message=bytes("", encoding='utf-8'))
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Note: MLX-LM doesn't support embeddings directly. This method returns an error.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
print("Embeddings not supported in MLX backend", file=sys.stderr)
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details("Embeddings are not supported in the MLX backend.")
return backend_pb2.EmbeddingResult()
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results using MLX.
Args:
request: The predict stream request.
context: The gRPC context.
Yields:
backend_pb2.Reply: Streaming predict results.
"""
try:
# Prepare the prompt
prompt = self._prepare_prompt(request)
# Build generation parameters using request attributes and options
max_tokens, sampler_params = self._build_generation_params(request, default_max_tokens=512)
print(f"Streaming text with MLX - max_tokens: {max_tokens}, sampler_params: {sampler_params}", file=sys.stderr)
# Create sampler with parameters
sampler = make_sampler(**sampler_params)
# Stream text generation using MLX with proper parameters
for response in stream_generate(
self.model,
self.tokenizer,
prompt=prompt,
max_tokens=max_tokens,
sampler=sampler,
prompt_cache=self.prompt_cache,
):
yield backend_pb2.Reply(message=bytes(response.text, encoding='utf-8'))
except Exception as e:
print(f"Error in MLX PredictStream: {e}", file=sys.stderr)
context.set_code(grpc.StatusCode.INTERNAL)
context.set_details(f"Streaming generation failed: {str(e)}")
yield backend_pb2.Reply(message=bytes("", encoding='utf-8'))
def _prepare_prompt(self, request):
"""
Prepare the prompt for MLX generation, handling chat templates if needed.
Args:
request: The gRPC request containing prompt and message information.
Returns:
str: The prepared prompt.
"""
# If tokenizer template is enabled and messages are provided instead of prompt, apply the tokenizer template
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
# Convert gRPC messages to the format expected by apply_chat_template
messages = []
for msg in request.Messages:
messages.append({"role": msg.role, "content": msg.content})
prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
return prompt
else:
return request.Prompt
def _build_generation_params(self, request, default_max_tokens=200):
"""
Build generation parameters from request attributes and options.
Args:
request: The gRPC request.
default_max_tokens: Default max_tokens if not specified.
Returns:
tuple: (max_tokens, sampler_params dict)
"""
# Extract max_tokens
max_tokens = getattr(request, 'Tokens', default_max_tokens)
if max_tokens == 0:
max_tokens = default_max_tokens
# Extract sampler parameters from request attributes
temp = getattr(request, 'Temperature', 0.0)
if temp == 0.0:
temp = 0.6 # Default temperature
top_p = getattr(request, 'TopP', 0.0)
if top_p == 0.0:
top_p = 1.0 # Default top_p
# Initialize sampler parameters
sampler_params = {
'temp': temp,
'top_p': top_p,
'xtc_threshold': 0.0,
'xtc_probability': 0.0,
}
# Add seed if specified
seed = getattr(request, 'Seed', 0)
if seed != 0:
mx.random.seed(seed)
# Override with options if available
if hasattr(self, 'options'):
# Max tokens from options
if 'max_tokens' in self.options:
max_tokens = self.options['max_tokens']
# Sampler parameters from options
sampler_option_mapping = {
'temp': 'temp',
'temperature': 'temp', # alias
'top_p': 'top_p',
'xtc_threshold': 'xtc_threshold',
'xtc_probability': 'xtc_probability',
}
for option_key, param_key in sampler_option_mapping.items():
if option_key in self.options:
sampler_params[param_key] = self.options[option_key]
# Handle seed from options
if 'seed' in self.options:
mx.random.seed(self.options['seed'])
# Special tokens for XTC sampling (if tokenizer has eos_token_ids)
xtc_special_tokens = []
if hasattr(self.tokenizer, 'eos_token_ids') and self.tokenizer.eos_token_ids:
xtc_special_tokens = list(self.tokenizer.eos_token_ids)
elif hasattr(self.tokenizer, 'eos_token_id') and self.tokenizer.eos_token_id is not None:
xtc_special_tokens = [self.tokenizer.eos_token_id]
# Add newline token if available
try:
newline_tokens = self.tokenizer.encode("\n")
xtc_special_tokens.extend(newline_tokens)
except:
pass # Skip if encoding fails
sampler_params['xtc_special_tokens'] = xtc_special_tokens
return max_tokens, sampler_params
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
# Add the servicer to the server
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
# Bind the server to the address
server.add_insecure_port(address)
# Gracefully shutdown the server on SIGTERM or SIGINT
loop = asyncio.get_event_loop()
for sig in (signal.SIGINT, signal.SIGTERM):
loop.add_signal_handler(
sig, lambda: asyncio.ensure_future(server.stop(5))
)
# Start the server
await server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Wait for the server to be terminated
await server.wait_for_termination()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
asyncio.run(serve(args.addr))

View File

@@ -1,13 +1,15 @@
#!/bin/bash
set -e
USE_PIP=true
PYTHON_VERSION=""
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
ensureVenv
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
installRequirements

View File

@@ -0,0 +1 @@
mlx-lm

View File

@@ -0,0 +1,4 @@
grpcio==1.71.0
protobuf
certifi
setuptools

11
backend/python/mlx/run.sh Executable file
View File

@@ -0,0 +1,11 @@
#!/bin/bash
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
startBackend $@

146
backend/python/mlx/test.py Normal file
View File

@@ -0,0 +1,146 @@
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
import unittest
import subprocess
import time
import grpc
import backend_pb2_grpc
import backend_pb2
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service.
This class contains methods to test the startup and shutdown of the gRPC service.
"""
def setUp(self):
self.service = subprocess.Popen(["python", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
self.service.terminate()
self.service.wait()
def test_server_startup(self):
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_text(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
self.assertTrue(response.success)
req = backend_pb2.PredictOptions(Prompt="The capital of France is")
resp = stub.Predict(req)
self.assertIsNotNone(resp.message)
except Exception as err:
print(err)
self.fail("text service failed")
finally:
self.tearDown()
def test_sampling_params(self):
"""
This method tests if all sampling parameters are correctly processed
NOTE: this does NOT test for correctness, just that we received a compatible response
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
self.assertTrue(response.success)
req = backend_pb2.PredictOptions(
Prompt="The capital of France is",
TopP=0.8,
Tokens=50,
Temperature=0.7,
TopK=40,
PresencePenalty=0.1,
FrequencyPenalty=0.2,
RepetitionPenalty=1.1,
MinP=0.05,
Seed=42,
StopPrompts=["\n"],
StopTokenIds=[50256],
BadWords=["badword"],
IncludeStopStrInOutput=True,
IgnoreEOS=True,
MinTokens=5,
Logprobs=5,
PromptLogprobs=5,
SkipSpecialTokens=True,
SpacesBetweenSpecialTokens=True,
TruncatePromptTokens=10,
GuidedDecoding=True,
N=2,
)
resp = stub.Predict(req)
self.assertIsNotNone(resp.message)
self.assertIsNotNone(resp.logprobs)
except Exception as err:
print(err)
self.fail("sampling params service failed")
finally:
self.tearDown()
def test_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="intfloat/e5-mistral-7b-instruct"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
# assert that is a list of floats
self.assertIsInstance(embedding_response.embeddings, list)
# assert that the list is not empty
self.assertTrue(len(embedding_response.embeddings) > 0)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()

12
backend/python/mlx/test.sh Executable file
View File

@@ -0,0 +1,12 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
runUnittests

View File

@@ -1,30 +1,24 @@
.PHONY: rerankers
rerankers: protogen
rerankers:
bash install.sh
.PHONY: run
run: protogen
run: rerankers
@echo "Running rerankers..."
bash run.sh
@echo "rerankers run."
# It is not working well by using command line. It only6 works with IDE like VSCode.
.PHONY: test
test: protogen
test: rerankers
@echo "Testing rerankers..."
bash test.sh
@echo "rerankers tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -3,18 +3,11 @@
.PHONY: install
install:
bash install.sh
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,30 +1,24 @@
.PHONY: transformers
transformers: protogen
transformers:
bash install.sh
.PHONY: run
run: protogen
run: transformers
@echo "Running transformers..."
bash run.sh
@echo "transformers run."
# It is not working well by using command line. It only6 works with IDE like VSCode.
.PHONY: test
test: protogen
test: transformers
@echo "Testing transformers..."
bash test.sh
@echo "transformers tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -94,7 +94,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.SentenceTransformer = False
device_map="cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device_map = "mps"
quantization = None
autoTokenizer = True

View File

@@ -1,29 +1,23 @@
.PHONY: vllm
vllm: protogen
vllm:
bash install.sh
.PHONY: run
run: protogen
run: vllm
@echo "Running vllm..."
bash run.sh
@echo "vllm run."
.PHONY: test
test: protogen
test: vllm
@echo "Testing vllm..."
bash test.sh
@echo "vllm tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__