mirror of
https://github.com/mudler/LocalAI.git
synced 2025-12-30 22:20:20 -06:00
feat(vibevoice): add new backend (#7494)
* feat(vibevoice): add backend Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * chore: add workflow and backend index Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * chore(gallery): add vibevoice Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Use self-hosted for intel builds Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Pin python version for l4t Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
committed by
GitHub
parent
ef44ace73f
commit
32dcb58e89
23
backend/python/vibevoice/Makefile
Normal file
23
backend/python/vibevoice/Makefile
Normal file
@@ -0,0 +1,23 @@
|
||||
.PHONY: vibevoice
|
||||
vibevoice:
|
||||
bash install.sh
|
||||
|
||||
.PHONY: run
|
||||
run: vibevoice
|
||||
@echo "Running vibevoice..."
|
||||
bash run.sh
|
||||
@echo "vibevoice run."
|
||||
|
||||
.PHONY: test
|
||||
test: vibevoice
|
||||
@echo "Testing vibevoice..."
|
||||
bash test.sh
|
||||
@echo "vibevoice tested."
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
rm -rf venv __pycache__
|
||||
485
backend/python/vibevoice/backend.py
Normal file
485
backend/python/vibevoice/backend.py
Normal file
@@ -0,0 +1,485 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
This is an extra gRPC server of LocalAI for VibeVoice
|
||||
"""
|
||||
from concurrent import futures
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import copy
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
import torch
|
||||
from vibevoice.modular.modeling_vibevoice_streaming_inference import VibeVoiceStreamingForConditionalGenerationInference
|
||||
from vibevoice.processor.vibevoice_streaming_processor import VibeVoiceStreamingProcessor
|
||||
|
||||
import grpc
|
||||
|
||||
def is_float(s):
|
||||
"""Check if a string can be converted to float."""
|
||||
try:
|
||||
float(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
def is_int(s):
|
||||
"""Check if a string can be converted to int."""
|
||||
try:
|
||||
int(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
BackendServicer is the class that implements the gRPC service
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
# Get device
|
||||
if torch.cuda.is_available():
|
||||
print("CUDA is available", file=sys.stderr)
|
||||
device = "cuda"
|
||||
else:
|
||||
print("CUDA is not available", file=sys.stderr)
|
||||
device = "cpu"
|
||||
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
||||
if mps_available:
|
||||
device = "mps"
|
||||
if not torch.cuda.is_available() and request.CUDA:
|
||||
return backend_pb2.Result(success=False, message="CUDA is not available")
|
||||
|
||||
# Normalize potential 'mpx' typo to 'mps'
|
||||
if device == "mpx":
|
||||
print("Note: device 'mpx' detected, treating it as 'mps'.", file=sys.stderr)
|
||||
device = "mps"
|
||||
|
||||
# Validate mps availability if requested
|
||||
if device == "mps" and not torch.backends.mps.is_available():
|
||||
print("Warning: MPS not available. Falling back to CPU.", file=sys.stderr)
|
||||
device = "cpu"
|
||||
|
||||
self.device = device
|
||||
self._torch_device = torch.device(device)
|
||||
|
||||
options = request.Options
|
||||
|
||||
# empty dict
|
||||
self.options = {}
|
||||
|
||||
# The options are a list of strings in this form optname:optvalue
|
||||
# We are storing all the options in a dict so we can use it later when
|
||||
# generating the audio
|
||||
for opt in options:
|
||||
if ":" not in opt:
|
||||
continue
|
||||
key, value = opt.split(":", 1) # Split only on first colon
|
||||
# if value is a number, convert it to the appropriate type
|
||||
if is_float(value):
|
||||
value = float(value)
|
||||
elif is_int(value):
|
||||
value = int(value)
|
||||
elif value.lower() in ["true", "false"]:
|
||||
value = value.lower() == "true"
|
||||
self.options[key] = value
|
||||
|
||||
# Get model path from request
|
||||
model_path = request.Model
|
||||
if not model_path:
|
||||
model_path = "microsoft/VibeVoice-Realtime-0.5B"
|
||||
|
||||
# Get inference steps from options, default to 5
|
||||
self.inference_steps = self.options.get("inference_steps", 5)
|
||||
if not isinstance(self.inference_steps, int) or self.inference_steps <= 0:
|
||||
self.inference_steps = 5
|
||||
|
||||
# Get cfg_scale from options, default to 1.5
|
||||
self.cfg_scale = self.options.get("cfg_scale", 1.5)
|
||||
if not isinstance(self.cfg_scale, (int, float)) or self.cfg_scale <= 0:
|
||||
self.cfg_scale = 1.5
|
||||
|
||||
# Determine voices directory
|
||||
# Priority order:
|
||||
# 1. voices_dir option (explicitly set by user - highest priority)
|
||||
# 2. Relative to ModelFile if provided
|
||||
# 3. Relative to ModelPath (models directory) if provided
|
||||
# 4. Backend directory
|
||||
# 5. Absolute path from AudioPath if provided
|
||||
voices_dir = None
|
||||
|
||||
# First check if voices_dir is explicitly set in options
|
||||
if "voices_dir" in self.options:
|
||||
voices_dir_option = self.options["voices_dir"]
|
||||
if isinstance(voices_dir_option, str) and voices_dir_option.strip():
|
||||
voices_dir = voices_dir_option.strip()
|
||||
# If relative path, try to resolve it relative to ModelPath or ModelFile
|
||||
if not os.path.isabs(voices_dir):
|
||||
if hasattr(request, 'ModelPath') and request.ModelPath:
|
||||
voices_dir = os.path.join(request.ModelPath, voices_dir)
|
||||
elif request.ModelFile:
|
||||
model_file_base = os.path.dirname(request.ModelFile)
|
||||
voices_dir = os.path.join(model_file_base, voices_dir)
|
||||
# If still relative, make it absolute from current working directory
|
||||
if not os.path.isabs(voices_dir):
|
||||
voices_dir = os.path.abspath(voices_dir)
|
||||
# Check if the directory exists
|
||||
if not os.path.exists(voices_dir):
|
||||
print(f"Warning: voices_dir option specified but directory does not exist: {voices_dir}", file=sys.stderr)
|
||||
voices_dir = None
|
||||
|
||||
# If not set via option, try relative to ModelFile if provided
|
||||
if not voices_dir and request.ModelFile:
|
||||
model_file_base = os.path.dirname(request.ModelFile)
|
||||
voices_dir = os.path.join(model_file_base, "voices", "streaming_model")
|
||||
if not os.path.exists(voices_dir):
|
||||
voices_dir = None
|
||||
|
||||
# If not found, try relative to ModelPath (models directory)
|
||||
if not voices_dir and hasattr(request, 'ModelPath') and request.ModelPath:
|
||||
voices_dir = os.path.join(request.ModelPath, "voices", "streaming_model")
|
||||
if not os.path.exists(voices_dir):
|
||||
voices_dir = None
|
||||
|
||||
# If not found, try relative to backend directory
|
||||
if not voices_dir:
|
||||
backend_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
voices_dir = os.path.join(backend_dir, "vibevoice", "voices", "streaming_model")
|
||||
if not os.path.exists(voices_dir):
|
||||
# Try absolute path from AudioPath if provided
|
||||
if request.AudioPath and os.path.isabs(request.AudioPath):
|
||||
voices_dir = os.path.dirname(request.AudioPath)
|
||||
else:
|
||||
voices_dir = None
|
||||
|
||||
self.voices_dir = voices_dir
|
||||
self.voice_presets = {}
|
||||
self._voice_cache = {}
|
||||
self.default_voice_key = None
|
||||
|
||||
# Load voice presets if directory exists
|
||||
if self.voices_dir and os.path.exists(self.voices_dir):
|
||||
self._load_voice_presets()
|
||||
else:
|
||||
print(f"Warning: Voices directory not found. Voice presets will not be available.", file=sys.stderr)
|
||||
|
||||
try:
|
||||
print(f"Loading processor & model from {model_path}", file=sys.stderr)
|
||||
self.processor = VibeVoiceStreamingProcessor.from_pretrained(model_path)
|
||||
|
||||
# Decide dtype & attention implementation
|
||||
if self.device == "mps":
|
||||
load_dtype = torch.float32 # MPS requires float32
|
||||
device_map = None
|
||||
attn_impl_primary = "sdpa" # flash_attention_2 not supported on MPS
|
||||
elif self.device == "cuda":
|
||||
load_dtype = torch.bfloat16
|
||||
device_map = "cuda"
|
||||
attn_impl_primary = "flash_attention_2"
|
||||
else: # cpu
|
||||
load_dtype = torch.float32
|
||||
device_map = "cpu"
|
||||
attn_impl_primary = "sdpa"
|
||||
|
||||
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}", file=sys.stderr)
|
||||
|
||||
# Load model with device-specific logic
|
||||
try:
|
||||
if self.device == "mps":
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
attn_implementation=attn_impl_primary,
|
||||
device_map=None, # load then move
|
||||
)
|
||||
self.model.to("mps")
|
||||
elif self.device == "cuda":
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map="cuda",
|
||||
attn_implementation=attn_impl_primary,
|
||||
)
|
||||
else: # cpu
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map="cpu",
|
||||
attn_implementation=attn_impl_primary,
|
||||
)
|
||||
except Exception as e:
|
||||
if attn_impl_primary == 'flash_attention_2':
|
||||
print(f"[ERROR] : {type(e).__name__}: {e}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.", file=sys.stderr)
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map=(self.device if self.device in ("cuda", "cpu") else None),
|
||||
attn_implementation='sdpa'
|
||||
)
|
||||
if self.device == "mps":
|
||||
self.model.to("mps")
|
||||
else:
|
||||
raise e
|
||||
|
||||
self.model.eval()
|
||||
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
||||
|
||||
# Set default voice key
|
||||
if self.voice_presets:
|
||||
# Try to get default from environment or use first available
|
||||
preset_name = os.environ.get("VOICE_PRESET")
|
||||
self.default_voice_key = self._determine_voice_key(preset_name)
|
||||
print(f"Default voice preset: {self.default_voice_key}", file=sys.stderr)
|
||||
else:
|
||||
print("Warning: No voice presets available. Voice selection will not work.", file=sys.stderr)
|
||||
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def _load_voice_presets(self):
|
||||
"""Load voice presets from the voices directory."""
|
||||
if not self.voices_dir or not os.path.exists(self.voices_dir):
|
||||
self.voice_presets = {}
|
||||
return
|
||||
|
||||
self.voice_presets = {}
|
||||
|
||||
# Get all .pt files in the voices directory
|
||||
pt_files = [f for f in os.listdir(self.voices_dir)
|
||||
if f.lower().endswith('.pt') and os.path.isfile(os.path.join(self.voices_dir, f))]
|
||||
|
||||
# Create dictionary with filename (without extension) as key
|
||||
for pt_file in pt_files:
|
||||
# Remove .pt extension to get the name
|
||||
name = os.path.splitext(pt_file)[0]
|
||||
# Create full path
|
||||
full_path = os.path.join(self.voices_dir, pt_file)
|
||||
self.voice_presets[name] = full_path
|
||||
|
||||
# Sort the voice presets alphabetically by name
|
||||
self.voice_presets = dict(sorted(self.voice_presets.items()))
|
||||
|
||||
print(f"Found {len(self.voice_presets)} voice files in {self.voices_dir}", file=sys.stderr)
|
||||
if self.voice_presets:
|
||||
print(f"Available voices: {', '.join(self.voice_presets.keys())}", file=sys.stderr)
|
||||
|
||||
def _determine_voice_key(self, name):
|
||||
"""Determine voice key from name or use default."""
|
||||
if name and name in self.voice_presets:
|
||||
return name
|
||||
|
||||
# Try default key
|
||||
default_key = "en-WHTest_man"
|
||||
if default_key in self.voice_presets:
|
||||
return default_key
|
||||
|
||||
# Use first available
|
||||
if self.voice_presets:
|
||||
first_key = next(iter(self.voice_presets))
|
||||
print(f"Using fallback voice preset: {first_key}", file=sys.stderr)
|
||||
return first_key
|
||||
|
||||
return None
|
||||
|
||||
def _get_voice_path(self, speaker_name):
|
||||
"""Get voice file path for a given speaker name."""
|
||||
if not self.voice_presets:
|
||||
return None
|
||||
|
||||
# First try exact match
|
||||
if speaker_name and speaker_name in self.voice_presets:
|
||||
return self.voice_presets[speaker_name]
|
||||
|
||||
# Try partial matching (case insensitive)
|
||||
if speaker_name:
|
||||
speaker_lower = speaker_name.lower()
|
||||
for preset_name, path in self.voice_presets.items():
|
||||
if preset_name.lower() in speaker_lower or speaker_lower in preset_name.lower():
|
||||
return path
|
||||
|
||||
# Default to first voice if no match found
|
||||
if self.default_voice_key and self.default_voice_key in self.voice_presets:
|
||||
return self.voice_presets[self.default_voice_key]
|
||||
elif self.voice_presets:
|
||||
default_voice = list(self.voice_presets.values())[0]
|
||||
print(f"Warning: No voice preset found for '{speaker_name}', using default voice: {default_voice}", file=sys.stderr)
|
||||
return default_voice
|
||||
|
||||
return None
|
||||
|
||||
def _ensure_voice_cached(self, voice_path):
|
||||
"""Load and cache voice preset."""
|
||||
if not voice_path or not os.path.exists(voice_path):
|
||||
return None
|
||||
|
||||
# Use path as cache key
|
||||
if voice_path not in self._voice_cache:
|
||||
print(f"Loading prefilled prompt from {voice_path}", file=sys.stderr)
|
||||
prefilled_outputs = torch.load(
|
||||
voice_path,
|
||||
map_location=self._torch_device,
|
||||
weights_only=False,
|
||||
)
|
||||
self._voice_cache[voice_path] = prefilled_outputs
|
||||
|
||||
return self._voice_cache[voice_path]
|
||||
|
||||
def TTS(self, request, context):
|
||||
try:
|
||||
# Get voice selection
|
||||
# Priority: request.voice > AudioPath > default
|
||||
voice_path = None
|
||||
voice_key = None
|
||||
|
||||
if request.voice:
|
||||
# Try to get voice by name
|
||||
voice_path = self._get_voice_path(request.voice)
|
||||
if voice_path:
|
||||
voice_key = request.voice
|
||||
elif request.AudioPath:
|
||||
# Use AudioPath as voice file
|
||||
if os.path.isabs(request.AudioPath):
|
||||
voice_path = request.AudioPath
|
||||
elif request.ModelFile:
|
||||
model_file_base = os.path.dirname(request.ModelFile)
|
||||
voice_path = os.path.join(model_file_base, request.AudioPath)
|
||||
elif hasattr(request, 'ModelPath') and request.ModelPath:
|
||||
voice_path = os.path.join(request.ModelPath, request.AudioPath)
|
||||
else:
|
||||
voice_path = request.AudioPath
|
||||
elif self.default_voice_key:
|
||||
voice_path = self._get_voice_path(self.default_voice_key)
|
||||
voice_key = self.default_voice_key
|
||||
|
||||
if not voice_path or not os.path.exists(voice_path):
|
||||
return backend_pb2.Result(
|
||||
success=False,
|
||||
message=f"Voice file not found: {voice_path}. Please provide a valid voice preset or AudioPath."
|
||||
)
|
||||
|
||||
# Load voice preset
|
||||
prefilled_outputs = self._ensure_voice_cached(voice_path)
|
||||
if prefilled_outputs is None:
|
||||
return backend_pb2.Result(
|
||||
success=False,
|
||||
message=f"Failed to load voice preset from {voice_path}"
|
||||
)
|
||||
|
||||
# Get generation parameters from options
|
||||
cfg_scale = self.options.get("cfg_scale", self.cfg_scale)
|
||||
inference_steps = self.options.get("inference_steps", self.inference_steps)
|
||||
do_sample = self.options.get("do_sample", False)
|
||||
temperature = self.options.get("temperature", 0.9)
|
||||
top_p = self.options.get("top_p", 0.9)
|
||||
|
||||
# Update inference steps if needed
|
||||
if inference_steps != self.inference_steps:
|
||||
self.model.set_ddpm_inference_steps(num_steps=inference_steps)
|
||||
self.inference_steps = inference_steps
|
||||
|
||||
# Prepare text
|
||||
text = request.text.strip().replace("'", "'").replace('"', '"').replace('"', '"')
|
||||
|
||||
# Prepare inputs
|
||||
inputs = self.processor.process_input_with_cached_prompt(
|
||||
text=text,
|
||||
cached_prompt=prefilled_outputs,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
return_attention_mask=True,
|
||||
)
|
||||
|
||||
# Move tensors to target device
|
||||
target_device = self._torch_device
|
||||
for k, v in inputs.items():
|
||||
if torch.is_tensor(v):
|
||||
inputs[k] = v.to(target_device)
|
||||
|
||||
print(f"Generating audio with cfg_scale: {cfg_scale}, inference_steps: {inference_steps}", file=sys.stderr)
|
||||
|
||||
# Generate audio
|
||||
outputs = self.model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=None,
|
||||
cfg_scale=cfg_scale,
|
||||
tokenizer=self.processor.tokenizer,
|
||||
generation_config={
|
||||
'do_sample': do_sample,
|
||||
'temperature': temperature if do_sample else 1.0,
|
||||
'top_p': top_p if do_sample else 1.0,
|
||||
},
|
||||
verbose=False,
|
||||
all_prefilled_outputs=copy.deepcopy(prefilled_outputs) if prefilled_outputs is not None else None,
|
||||
)
|
||||
|
||||
# Save output
|
||||
if outputs.speech_outputs and outputs.speech_outputs[0] is not None:
|
||||
self.processor.save_audio(
|
||||
outputs.speech_outputs[0], # First (and only) batch item
|
||||
output_path=request.dst,
|
||||
)
|
||||
print(f"Saved output to {request.dst}", file=sys.stderr)
|
||||
else:
|
||||
return backend_pb2.Result(
|
||||
success=False,
|
||||
message="No audio output generated"
|
||||
)
|
||||
|
||||
except Exception as err:
|
||||
print(f"Error in TTS: {err}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
|
||||
options=[
|
||||
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
|
||||
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
|
||||
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
|
||||
])
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
35
backend/python/vibevoice/install.sh
Executable file
35
backend/python/vibevoice/install.sh
Executable file
@@ -0,0 +1,35 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
backend_dir=$(dirname $0)
|
||||
if [ -d $backend_dir/common ]; then
|
||||
source $backend_dir/common/libbackend.sh
|
||||
else
|
||||
source $backend_dir/../common/libbackend.sh
|
||||
fi
|
||||
|
||||
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
|
||||
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
|
||||
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
|
||||
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
|
||||
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
|
||||
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
|
||||
fi
|
||||
|
||||
# Use python 3.12 for l4t
|
||||
if [ "x${BUILD_PROFILE}" == "xl4t12" ] || [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
|
||||
PYTHON_VERSION="3.12"
|
||||
PYTHON_PATCH="12"
|
||||
PY_STANDALONE_TAG="20251120"
|
||||
fi
|
||||
|
||||
installRequirements
|
||||
|
||||
git clone https://github.com/microsoft/VibeVoice.git
|
||||
cd VibeVoice/
|
||||
|
||||
if [ "x${USE_PIP}" == "xtrue" ]; then
|
||||
pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
|
||||
else
|
||||
uv pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
|
||||
fi
|
||||
22
backend/python/vibevoice/requirements-cpu.txt
Normal file
22
backend/python/vibevoice/requirements-cpu.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
torchvision==0.22.1
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
torch==2.7.1
|
||||
optimum-quanto
|
||||
ftfy
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
22
backend/python/vibevoice/requirements-cublas11.txt
Normal file
22
backend/python/vibevoice/requirements-cublas11.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
torchvision==0.22.1
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
torch==2.7.1
|
||||
optimum-quanto
|
||||
ftfy
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
22
backend/python/vibevoice/requirements-cublas12.txt
Normal file
22
backend/python/vibevoice/requirements-cublas12.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu121
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
torchvision
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
torch
|
||||
ftfy
|
||||
optimum-quanto
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
22
backend/python/vibevoice/requirements-cublas13.txt
Normal file
22
backend/python/vibevoice/requirements-cublas13.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu130
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
torchvision
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
torch
|
||||
ftfy
|
||||
optimum-quanto
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
22
backend/python/vibevoice/requirements-hipblas.txt
Normal file
22
backend/python/vibevoice/requirements-hipblas.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.3
|
||||
torch==2.7.1+rocm6.3
|
||||
torchvision==0.22.1+rocm6.3
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
optimum-quanto
|
||||
ftfy
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
26
backend/python/vibevoice/requirements-intel.txt
Normal file
26
backend/python/vibevoice/requirements-intel.txt
Normal file
@@ -0,0 +1,26 @@
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
intel-extension-for-pytorch==2.3.110+xpu
|
||||
torch==2.5.1+cxx11.abi
|
||||
torchvision==0.20.1+cxx11.abi
|
||||
oneccl_bind_pt==2.8.0+xpu
|
||||
optimum[openvino]
|
||||
setuptools
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
optimum-quanto
|
||||
ftfy
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
22
backend/python/vibevoice/requirements-l4t12.txt
Normal file
22
backend/python/vibevoice/requirements-l4t12.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
--extra-index-url https://pypi.jetson-ai-lab.io/jp6/cu129/
|
||||
torch
|
||||
git+https://github.com/huggingface/diffusers
|
||||
transformers==4.51.3
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
optimum-quanto
|
||||
numpy<2
|
||||
sentencepiece
|
||||
torchvision
|
||||
ftfy
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
22
backend/python/vibevoice/requirements-l4t13.txt
Normal file
22
backend/python/vibevoice/requirements-l4t13.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
--extra-index-url https://pypi.jetson-ai-lab.io/sbsa/cu130
|
||||
torch
|
||||
git+https://github.com/huggingface/diffusers
|
||||
transformers==4.51.3
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
optimum-quanto
|
||||
numpy<2
|
||||
sentencepiece
|
||||
torchvision
|
||||
ftfy
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
21
backend/python/vibevoice/requirements-mps.txt
Normal file
21
backend/python/vibevoice/requirements-mps.txt
Normal file
@@ -0,0 +1,21 @@
|
||||
torch==2.7.1
|
||||
torchvision==0.22.1
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
optimum-quanto
|
||||
ftfy
|
||||
llvmlite>=0.40.0
|
||||
numba>=0.57.0
|
||||
tqdm
|
||||
numpy
|
||||
scipy
|
||||
librosa
|
||||
ml-collections
|
||||
absl-py
|
||||
gradio
|
||||
av
|
||||
4
backend/python/vibevoice/requirements.txt
Normal file
4
backend/python/vibevoice/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
grpcio==1.71.0
|
||||
protobuf
|
||||
certifi
|
||||
packaging==24.1
|
||||
9
backend/python/vibevoice/run.sh
Executable file
9
backend/python/vibevoice/run.sh
Executable file
@@ -0,0 +1,9 @@
|
||||
#!/bin/bash
|
||||
backend_dir=$(dirname $0)
|
||||
if [ -d $backend_dir/common ]; then
|
||||
source $backend_dir/common/libbackend.sh
|
||||
else
|
||||
source $backend_dir/../common/libbackend.sh
|
||||
fi
|
||||
|
||||
startBackend $@
|
||||
82
backend/python/vibevoice/test.py
Normal file
82
backend/python/vibevoice/test.py
Normal file
@@ -0,0 +1,82 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
|
||||
time.sleep(30)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
|
||||
print(response)
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
|
||||
tts_response = stub.TTS(tts_request)
|
||||
self.assertIsNotNone(tts_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
11
backend/python/vibevoice/test.sh
Executable file
11
backend/python/vibevoice/test.sh
Executable file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
backend_dir=$(dirname $0)
|
||||
if [ -d $backend_dir/common ]; then
|
||||
source $backend_dir/common/libbackend.sh
|
||||
else
|
||||
source $backend_dir/../common/libbackend.sh
|
||||
fi
|
||||
|
||||
runUnittests
|
||||
Reference in New Issue
Block a user