mirror of
https://github.com/mudler/LocalAI.git
synced 2026-01-05 18:19:53 -06:00
chore(refactor): cli -> cmd, update docs (#6148)
* chore(refactor): cli -> cmd Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Update README Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
committed by
GitHub
parent
900745bb4d
commit
3be8b2d8e1
@@ -1,38 +1,190 @@
|
||||
# Common commands about conda environment
|
||||
# Python Backends for LocalAI
|
||||
|
||||
## Create a new empty conda environment
|
||||
This directory contains Python-based AI backends for LocalAI, providing support for various AI models and hardware acceleration targets.
|
||||
|
||||
```
|
||||
conda create --name <env-name> python=<your version> -y
|
||||
## Overview
|
||||
|
||||
conda create --name autogptq python=3.11 -y
|
||||
The Python backends use a unified build system based on `libbackend.sh` that provides:
|
||||
- **Automatic virtual environment management** with support for both `uv` and `pip`
|
||||
- **Hardware-specific dependency installation** (CPU, CUDA, Intel, MLX, etc.)
|
||||
- **Portable Python support** for standalone deployments
|
||||
- **Consistent backend execution** across different environments
|
||||
|
||||
## Available Backends
|
||||
|
||||
### Core AI Models
|
||||
- **transformers** - Hugging Face Transformers framework (PyTorch-based)
|
||||
- **vllm** - High-performance LLM inference engine
|
||||
- **mlx** - Apple Silicon optimized ML framework
|
||||
- **exllama2** - ExLlama2 quantized models
|
||||
|
||||
### Audio & Speech
|
||||
- **bark** - Text-to-speech synthesis
|
||||
- **coqui** - Coqui TTS models
|
||||
- **faster-whisper** - Fast Whisper speech recognition
|
||||
- **kitten-tts** - Lightweight TTS
|
||||
- **mlx-audio** - Apple Silicon audio processing
|
||||
- **chatterbox** - TTS model
|
||||
- **kokoro** - TTS models
|
||||
|
||||
### Computer Vision
|
||||
- **diffusers** - Stable Diffusion and image generation
|
||||
- **mlx-vlm** - Vision-language models for Apple Silicon
|
||||
- **rfdetr** - Object detection models
|
||||
|
||||
### Specialized
|
||||
|
||||
- **rerankers** - Text reranking models
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Prerequisites
|
||||
- Python 3.10+ (default: 3.10.18)
|
||||
- `uv` package manager (recommended) or `pip`
|
||||
- Appropriate hardware drivers for your target (CUDA, Intel, etc.)
|
||||
|
||||
### Installation
|
||||
|
||||
Each backend can be installed individually:
|
||||
|
||||
```bash
|
||||
# Navigate to a specific backend
|
||||
cd backend/python/transformers
|
||||
|
||||
# Install dependencies
|
||||
make transformers
|
||||
# or
|
||||
bash install.sh
|
||||
|
||||
# Run the backend
|
||||
make run
|
||||
# or
|
||||
bash run.sh
|
||||
```
|
||||
|
||||
## To activate the environment
|
||||
### Using the Unified Build System
|
||||
|
||||
As of conda 4.4
|
||||
```
|
||||
conda activate autogptq
|
||||
The `libbackend.sh` script provides consistent commands across all backends:
|
||||
|
||||
```bash
|
||||
# Source the library in your backend script
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
# Install requirements (automatically handles hardware detection)
|
||||
installRequirements
|
||||
|
||||
# Start the backend server
|
||||
startBackend $@
|
||||
|
||||
# Run tests
|
||||
runUnittests
|
||||
```
|
||||
|
||||
The conda version older than 4.4
|
||||
## Hardware Targets
|
||||
|
||||
```
|
||||
source activate autogptq
|
||||
The build system automatically detects and configures for different hardware:
|
||||
|
||||
- **CPU** - Standard CPU-only builds
|
||||
- **CUDA** - NVIDIA GPU acceleration (supports CUDA 11/12)
|
||||
- **Intel** - Intel XPU/GPU optimization
|
||||
- **MLX** - Apple Silicon (M1/M2/M3) optimization
|
||||
- **HIP** - AMD GPU acceleration
|
||||
|
||||
### Target-Specific Requirements
|
||||
|
||||
Backends can specify hardware-specific dependencies:
|
||||
- `requirements.txt` - Base requirements
|
||||
- `requirements-cpu.txt` - CPU-specific packages
|
||||
- `requirements-cublas11.txt` - CUDA 11 packages
|
||||
- `requirements-cublas12.txt` - CUDA 12 packages
|
||||
- `requirements-intel.txt` - Intel-optimized packages
|
||||
- `requirements-mps.txt` - Apple Silicon packages
|
||||
|
||||
## Configuration Options
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `PYTHON_VERSION` - Python version (default: 3.10)
|
||||
- `PYTHON_PATCH` - Python patch version (default: 18)
|
||||
- `BUILD_TYPE` - Force specific build target
|
||||
- `USE_PIP` - Use pip instead of uv (default: false)
|
||||
- `PORTABLE_PYTHON` - Enable portable Python builds
|
||||
- `LIMIT_TARGETS` - Restrict backend to specific targets
|
||||
|
||||
### Example: CUDA 12 Only Backend
|
||||
|
||||
```bash
|
||||
# In your backend script
|
||||
LIMIT_TARGETS="cublas12"
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
```
|
||||
|
||||
## Install the packages to your environment
|
||||
### Example: Intel-Optimized Backend
|
||||
|
||||
Sometimes you need to install the packages from the conda-forge channel
|
||||
|
||||
By using `conda`
|
||||
```
|
||||
conda install <your-package-name>
|
||||
|
||||
conda install -c conda-forge <your package-name>
|
||||
```bash
|
||||
# In your backend script
|
||||
LIMIT_TARGETS="intel"
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
```
|
||||
|
||||
Or by using `pip`
|
||||
## Development
|
||||
|
||||
### Adding a New Backend
|
||||
|
||||
1. Create a new directory in `backend/python/`
|
||||
2. Copy the template structure from `common/template/`
|
||||
3. Implement your `backend.py` with the required gRPC interface
|
||||
4. Add appropriate requirements files for your target hardware
|
||||
5. Use `libbackend.sh` for consistent build and execution
|
||||
|
||||
### Testing
|
||||
|
||||
```bash
|
||||
# Run backend tests
|
||||
make test
|
||||
# or
|
||||
bash test.sh
|
||||
```
|
||||
pip install <your-package-name>
|
||||
|
||||
### Building
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
make <backend-name>
|
||||
|
||||
# Clean build artifacts
|
||||
make clean
|
||||
```
|
||||
|
||||
## Architecture
|
||||
|
||||
Each backend follows a consistent structure:
|
||||
```
|
||||
backend-name/
|
||||
├── backend.py # Main backend implementation
|
||||
├── requirements.txt # Base dependencies
|
||||
├── requirements-*.txt # Hardware-specific dependencies
|
||||
├── install.sh # Installation script
|
||||
├── run.sh # Execution script
|
||||
├── test.sh # Test script
|
||||
├── Makefile # Build targets
|
||||
└── test.py # Unit tests
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Missing dependencies**: Ensure all requirements files are properly configured
|
||||
2. **Hardware detection**: Check that `BUILD_TYPE` matches your system
|
||||
3. **Python version**: Verify Python 3.10+ is available
|
||||
4. **Virtual environment**: Use `ensureVenv` to create/activate environments
|
||||
|
||||
## Contributing
|
||||
|
||||
When adding new backends or modifying existing ones:
|
||||
1. Follow the established directory structure
|
||||
2. Use `libbackend.sh` for consistent behavior
|
||||
3. Include appropriate requirements files for all target hardware
|
||||
4. Add comprehensive tests
|
||||
5. Update this README if adding new backend types
|
||||
|
||||
Reference in New Issue
Block a user