From 61d972a2efe61c3ab7a2175b088e7ee78ab052a1 Mon Sep 17 00:00:00 2001 From: "LocalAI [bot]" <139863280+localai-bot@users.noreply.github.com> Date: Thu, 23 Oct 2025 11:27:04 +0200 Subject: [PATCH] chore(model gallery): :robot: add 1 new models via gallery agent (#6691) chore(model gallery): :robot: add new models via gallery agent Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: mudler <2420543+mudler@users.noreply.github.com> --- gallery/index.yaml | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) diff --git a/gallery/index.yaml b/gallery/index.yaml index 621ad6330..6d6fcc9f4 100644 --- a/gallery/index.yaml +++ b/gallery/index.yaml @@ -22440,3 +22440,28 @@ - filename: Huihui-Qwen3-VL-30B-A3B-Instruct-abliterated-MXFP4_MOE.gguf sha256: acfe87d0bd3a286a31fffff780a2d7e9cc9e0b72721a6ba5c1b1c68641fb641e uri: huggingface://noctrex/Huihui-Qwen3-VL-30B-A3B-Instruct-abliterated-MXFP4_MOE-GGUF/Huihui-Qwen3-VL-30B-A3B-Instruct-abliterated-MXFP4_MOE.gguf +- !!merge <<: *afm + name: "a2fm-32b-rl" + urls: + - https://huggingface.co/mradermacher/A2FM-32B-rl-GGUF + description: | + **A²FM-32B-rl** is a 32-billion-parameter adaptive foundation model designed for hybrid reasoning and agentic tasks. It dynamically selects between *instant*, *reasoning*, and *agentic* execution modes using a **route-then-align** framework, enabling smarter, more efficient AI behavior. + + Trained with **Adaptive Policy Optimization (APO)**, it achieves state-of-the-art performance on benchmarks like AIME25 (70.4%) and BrowseComp (13.4%), while reducing inference cost by up to **45%** compared to traditional reasoning methods—delivering high accuracy at low cost. + + Originally developed by **PersonalAILab**, this model is optimized for tool-aware, multi-step problem solving and is ideal for advanced AI agents requiring both precision and efficiency. + + 🔹 *Model Type:* Adaptive Agent Foundation Model + 🔹 *Size:* 32B + 🔹 *Use Case:* Agentic reasoning, tool use, cost-efficient AI agents + 🔹 *Training Approach:* Route-then-align + Adaptive Policy Optimization (APO) + 🔹 *Performance:* SOTA on reasoning and agentic benchmarks + + 📄 [Paper](https://arxiv.org/abs/2510.12838) | 🐙 [GitHub](https://github.com/OPPO-PersonalAI/Adaptive_Agent_Foundation_Models) + overrides: + parameters: + model: A2FM-32B-rl.Q4_K_S.gguf + files: + - filename: A2FM-32B-rl.Q4_K_S.gguf + sha256: 930ff2241351322cc98a24f5aa46e7158757ca87f8fd2763d9ecc4a3ef9514ba + uri: huggingface://mradermacher/A2FM-32B-rl-GGUF/A2FM-32B-rl.Q4_K_S.gguf