feat(diffusers): add support for wan2.2 (#6153)

* feat(diffusers): add support for wan2.2

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore(ci): use ttl.sh for PRs

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add ftfy deps

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Revert "chore(ci): use ttl.sh for PRs"

This reverts commit c9fc3ecf28.

* Simplify

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore: do not pin torch/torchvision on cuda12

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto
2025-08-28 10:26:42 +02:00
committed by GitHub
parent 7ce92f0646
commit 9621edb4c5
15 changed files with 195 additions and 73 deletions

View File

@@ -18,7 +18,7 @@ import backend_pb2_grpc
import grpc
from diffusers import SanaPipeline, StableDiffusion3Pipeline, StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, \
EulerAncestralDiscreteScheduler, FluxPipeline, FluxTransformer2DModel, QwenImageEditPipeline
EulerAncestralDiscreteScheduler, FluxPipeline, FluxTransformer2DModel, QwenImageEditPipeline, AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline, Lumina2Text2ImgPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image, export_to_video
@@ -72,13 +72,6 @@ def is_float(s):
except ValueError:
return False
def is_int(s):
try:
int(s)
return True
except ValueError:
return False
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
# Credits to https://github.com/neggles
# See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111
@@ -184,9 +177,10 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
key, value = opt.split(":")
# if value is a number, convert it to the appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
if value.is_integer():
value = int(value)
else:
value = float(value)
self.options[key] = value
# From options, extract if present "torch_dtype" and set it to the appropriate type
@@ -334,6 +328,32 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
torch_dtype=torch.bfloat16)
self.pipe.vae.to(torch.bfloat16)
self.pipe.text_encoder.to(torch.bfloat16)
elif request.PipelineType == "WanPipeline":
# WAN2.2 pipeline requires special VAE handling
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
self.pipe = WanPipeline.from_pretrained(
request.Model,
vae=vae,
torch_dtype=torchType
)
self.txt2vid = True # WAN2.2 is a text-to-video pipeline
elif request.PipelineType == "WanImageToVideoPipeline":
# WAN2.2 image-to-video pipeline
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
self.pipe = WanImageToVideoPipeline.from_pretrained(
request.Model,
vae=vae,
torch_dtype=torchType
)
self.img2vid = True # WAN2.2 image-to-video pipeline
if CLIPSKIP and request.CLIPSkip != 0:
self.clip_skip = request.CLIPSkip
@@ -575,6 +595,96 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Result(message="Media generated", success=True)
def GenerateVideo(self, request, context):
try:
prompt = request.prompt
if not prompt:
return backend_pb2.Result(success=False, message="No prompt provided for video generation")
# Set default values from request or use defaults
num_frames = request.num_frames if request.num_frames > 0 else 81
fps = request.fps if request.fps > 0 else 16
cfg_scale = request.cfg_scale if request.cfg_scale > 0 else 4.0
num_inference_steps = request.step if request.step > 0 else 40
# Prepare generation parameters
kwargs = {
"prompt": prompt,
"negative_prompt": request.negative_prompt if request.negative_prompt else "",
"height": request.height if request.height > 0 else 720,
"width": request.width if request.width > 0 else 1280,
"num_frames": num_frames,
"guidance_scale": cfg_scale,
"num_inference_steps": num_inference_steps,
}
# Add custom options from self.options (including guidance_scale_2 if specified)
kwargs.update(self.options)
# Set seed if provided
if request.seed > 0:
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(request.seed)
# Handle start and end images for video generation
if request.start_image:
kwargs["start_image"] = load_image(request.start_image)
if request.end_image:
kwargs["end_image"] = load_image(request.end_image)
print(f"Generating video with {kwargs=}", file=sys.stderr)
# Generate video frames based on pipeline type
if self.PipelineType == "WanPipeline":
# WAN2.2 text-to-video generation
output = self.pipe(**kwargs)
frames = output.frames[0] # WAN2.2 returns frames in this format
elif self.PipelineType == "WanImageToVideoPipeline":
# WAN2.2 image-to-video generation
if request.start_image:
# Load and resize the input image according to WAN2.2 requirements
image = load_image(request.start_image)
# Use request dimensions or defaults, but respect WAN2.2 constraints
request_height = request.height if request.height > 0 else 480
request_width = request.width if request.width > 0 else 832
max_area = request_height * request_width
aspect_ratio = image.height / image.width
mod_value = self.pipe.vae_scale_factor_spatial * self.pipe.transformer.config.patch_size[1]
height = round((max_area * aspect_ratio) ** 0.5 / mod_value) * mod_value
width = round((max_area / aspect_ratio) ** 0.5 / mod_value) * mod_value
image = image.resize((width, height))
kwargs["image"] = image
kwargs["height"] = height
kwargs["width"] = width
output = self.pipe(**kwargs)
frames = output.frames[0]
elif self.img2vid:
# Generic image-to-video generation
if request.start_image:
image = load_image(request.start_image)
image = image.resize((request.width if request.width > 0 else 1024,
request.height if request.height > 0 else 576))
kwargs["image"] = image
output = self.pipe(**kwargs)
frames = output.frames[0]
elif self.txt2vid:
# Generic text-to-video generation
output = self.pipe(**kwargs)
frames = output.frames[0]
else:
return backend_pb2.Result(success=False, message=f"Pipeline {self.PipelineType} does not support video generation")
# Export video
export_to_video(frames, request.dst, fps=fps)
return backend_pb2.Result(message="Video generated successfully", success=True)
except Exception as err:
print(f"Error generating video: {err}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error generating video: {err}")
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),