Files
LocalAI/docs/content/getting-started/container-images.md
Ettore Di Giacinto 2cc4809b0d feat: docs revamp (#7313)
* docs

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Small enhancements

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Enhancements

* Default to zen-dark

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-11-19 22:21:20 +01:00

12 KiB

+++ disableToc = false title = "Run with container images" weight = 6 url = '/basics/container/' ico = "rocket_launch" +++

LocalAI provides a variety of images to support different environments. These images are available on quay.io and Docker Hub.

All-in-One images comes with a pre-configured set of models and backends, standard images instead do not have any model pre-configured and installed.

For GPU Acceleration support for Nvidia video graphic cards, use the Nvidia/CUDA images, if you don't have a GPU, use the CPU images. If you have AMD or Mac Silicon, see the [build section]({{%relref "installation/build" %}}).

{{% notice tip %}}

Available Images Types:

  • Images ending with -core are smaller images without predownload python dependencies. Use these images if you plan to use llama.cpp, stablediffusion-ncn or rwkv backends - if you are not sure which one to use, do not use these images.
  • Images containing the aio tag are all-in-one images with all the features enabled, and come with an opinionated set of configuration.

{{% /notice %}}

Prerequisites

Before you begin, ensure you have a container engine installed if you are not using the binaries. Suitable options include Docker or Podman. For installation instructions, refer to the following guides:

{{% notice tip %}}

Hardware Requirements: The hardware requirements for LocalAI vary based on the model size and quantization method used. For performance benchmarks with different backends, such as llama.cpp, visit this link. The rwkv backend is noted for its lower resource consumption.

{{% /notice %}}

Standard container images

Standard container images do not have pre-installed models. Use these if you want to configure models manually.

{{< tabs >}} {{% tab title="Vanilla / CPU Images" %}}

Description Quay Docker Hub
Latest images from the branch (development) quay.io/go-skynet/local-ai:master localai/localai:master
Latest tag quay.io/go-skynet/local-ai:latest localai/localai:latest
Versioned image quay.io/go-skynet/local-ai:{{< version >}} localai/localai:{{< version >}}

{{% /tab %}}

{{% tab title="GPU Images CUDA 11" %}}

Description Quay Docker Hub
Latest images from the branch (development) quay.io/go-skynet/local-ai:master-gpu-nvidia-cuda-11 localai/localai:master-gpu-nvidia-cuda-11
Latest tag quay.io/go-skynet/local-ai:latest-gpu-nvidia-cuda-11 localai/localai:latest-gpu-nvidia-cuda-11
Versioned image quay.io/go-skynet/local-ai:{{< version >}}-gpu-nvidia-cuda-11 localai/localai:{{< version >}}-gpu-nvidia-cuda-11

{{% /tab %}}

{{% tab title="GPU Images CUDA 12" %}}

Description Quay Docker Hub
Latest images from the branch (development) quay.io/go-skynet/local-ai:master-gpu-nvidia-cuda-12 localai/localai:master-gpu-nvidia-cuda-12
Latest tag quay.io/go-skynet/local-ai:latest-gpu-nvidia-cuda-12 localai/localai:latest-gpu-nvidia-cuda-12
Versioned image quay.io/go-skynet/local-ai:{{< version >}}-gpu-nvidia-cuda-12 localai/localai:{{< version >}}-gpu-nvidia-cuda-12

{{% /tab %}}

{{% tab title="Intel GPU" %}}

Description Quay Docker Hub
Latest images from the branch (development) quay.io/go-skynet/local-ai:master-gpu-intel localai/localai:master-gpu-intel
Latest tag quay.io/go-skynet/local-ai:latest-gpu-intel localai/localai:latest-gpu-intel
Versioned image quay.io/go-skynet/local-ai:{{< version >}}-gpu-intel localai/localai:{{< version >}}-gpu-intel

{{% /tab %}}

{{% tab title="AMD GPU" %}}

Description Quay Docker Hub
Latest images from the branch (development) quay.io/go-skynet/local-ai:master-gpu-hipblas localai/localai:master-gpu-hipblas
Latest tag quay.io/go-skynet/local-ai:latest-gpu-hipblas localai/localai:latest-gpu-hipblas
Versioned image quay.io/go-skynet/local-ai:{{< version >}}-gpu-hipblas localai/localai:{{< version >}}-gpu-hipblas

{{% /tab %}}

{{% tab title="Vulkan Images" %}}

Description Quay Docker Hub
Latest images from the branch (development) quay.io/go-skynet/local-ai:master-vulkan localai/localai:master-vulkan
Latest tag quay.io/go-skynet/local-ai:latest-gpu-vulkan localai/localai:latest-gpu-vulkan
Versioned image quay.io/go-skynet/local-ai:{{< version >}}-vulkan localai/localai:{{< version >}}-vulkan
{{% /tab %}}

{{% tab title="Nvidia Linux for tegra" %}}

These images are compatible with Nvidia ARM64 devices, such as the Jetson Nano, Jetson Xavier NX, and Jetson AGX Xavier. For more information, see the [Nvidia L4T guide]({{%relref "reference/nvidia-l4t" %}}).

Description Quay Docker Hub
Latest images from the branch (development) quay.io/go-skynet/local-ai:master-nvidia-l4t-arm64 localai/localai:master-nvidia-l4t-arm64
Latest tag quay.io/go-skynet/local-ai:latest-nvidia-l4t-arm64 localai/localai:latest-nvidia-l4t-arm64
Versioned image quay.io/go-skynet/local-ai:{{< version >}}-nvidia-l4t-arm64 localai/localai:{{< version >}}-nvidia-l4t-arm64

{{% /tab %}}

{{< /tabs >}}

All-in-one images

All-In-One images are images that come pre-configured with a set of models and backends to fully leverage almost all the LocalAI featureset. These images are available for both CPU and GPU environments. The AIO images are designed to be easy to use and require no configuration. Models configuration can be found here separated by size.

In the AIO images there are models configured with the names of OpenAI models, however, they are really backed by Open Source models. You can find the table below

Category Model name Real model (CPU) Real model (GPU)
Text Generation gpt-4 phi-2 hermes-2-pro-mistral
Multimodal Vision gpt-4-vision-preview bakllava llava-1.6-mistral
Image Generation stablediffusion stablediffusion dreamshaper-8
Speech to Text whisper-1 whisper with whisper-base model <= same
Text to Speech tts-1 en-us-amy-low.onnx from rhasspy/piper <= same
Embeddings text-embedding-ada-002 all-MiniLM-L6-v2 in Q4 all-MiniLM-L6-v2

Usage

Select the image (CPU or GPU) and start the container with Docker:

docker run -p 8080:8080 --name local-ai -ti localai/localai:latest-aio-cpu

LocalAI will automatically download all the required models, and the API will be available at localhost:8080.

Or with a docker-compose file:

version: "3.9"
services:
  api:
    image: localai/localai:latest-aio-cpu
    # For a specific version:
    # image: localai/localai:{{< version >}}-aio-cpu
    # For Nvidia GPUs decomment one of the following (cuda11 or cuda12):
    # image: localai/localai:{{< version >}}-aio-gpu-nvidia-cuda-11
    # image: localai/localai:{{< version >}}-aio-gpu-nvidia-cuda-12
    # image: localai/localai:latest-aio-gpu-nvidia-cuda-11
    # image: localai/localai:latest-aio-gpu-nvidia-cuda-12
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
      interval: 1m
      timeout: 20m
      retries: 5
    ports:
      - 8080:8080
    environment:
      - DEBUG=true
      # ...
    volumes:
      - ./models:/models:cached
    # decomment the following piece if running with Nvidia GPUs
    # deploy:
    #   resources:
    #     reservations:
    #       devices:
    #         - driver: nvidia
    #           count: 1
    #           capabilities: [gpu]

{{% notice tip %}}

Models caching: The AIO image will download the needed models on the first run if not already present and store those in /models inside the container. The AIO models will be automatically updated with new versions of AIO images.

You can change the directory inside the container by specifying a MODELS_PATH environment variable (or --models-path).

If you want to use a named model or a local directory, you can mount it as a volume to /models:

docker run -p 8080:8080 --name local-ai -ti -v $PWD/models:/models localai/localai:latest-aio-cpu

or associate a volume:

docker volume create localai-models
docker run -p 8080:8080 --name local-ai -ti -v localai-models:/models localai/localai:latest-aio-cpu

{{% /notice %}}

Available AIO images

Description Quay Docker Hub
Latest images for CPU quay.io/go-skynet/local-ai:latest-aio-cpu localai/localai:latest-aio-cpu
Versioned image (e.g. for CPU) quay.io/go-skynet/local-ai:{{< version >}}-aio-cpu localai/localai:{{< version >}}-aio-cpu
Latest images for Nvidia GPU (CUDA11) quay.io/go-skynet/local-ai:latest-aio-gpu-nvidia-cuda-11 localai/localai:latest-aio-gpu-nvidia-cuda-11
Latest images for Nvidia GPU (CUDA12) quay.io/go-skynet/local-ai:latest-aio-gpu-nvidia-cuda-12 localai/localai:latest-aio-gpu-nvidia-cuda-12
Latest images for AMD GPU quay.io/go-skynet/local-ai:latest-aio-gpu-hipblas localai/localai:latest-aio-gpu-hipblas
Latest images for Intel GPU quay.io/go-skynet/local-ai:latest-aio-gpu-intel localai/localai:latest-aio-gpu-intel

Available environment variables

The AIO Images are inheriting the same environment variables as the base images and the environment of LocalAI (that you can inspect by calling --help). However, it supports additional environment variables available only from the container image

Variable Default Description
PROFILE Auto-detected The size of the model to use. Available: cpu, gpu-8g
MODELS Auto-detected A list of models YAML Configuration file URI/URL (see also [running models]({{%relref "getting-started/models" %}}))

See Also

  • [GPU acceleration]({{%relref "features/gpu-acceleration" %}})