From e01dacff75c3a9307e29df73da5cf9119be5b8a6 Mon Sep 17 00:00:00 2001 From: Jonathan Fransson Date: Mon, 1 Apr 2019 16:06:18 -0600 Subject: [PATCH] merge --- .../space/rendering/renderablesatellites.cpp | 1100 ++++++++--------- .../space/rendering/renderablesatellites.h | 204 +-- 2 files changed, 645 insertions(+), 659 deletions(-) diff --git a/modules/space/rendering/renderablesatellites.cpp b/modules/space/rendering/renderablesatellites.cpp index 7594d2347e..cb0400964d 100644 --- a/modules/space/rendering/renderablesatellites.cpp +++ b/modules/space/rendering/renderablesatellites.cpp @@ -124,647 +124,633 @@ // namespace openspace { -// documentation::Documentation RenderableSatellites::Documentation() { -// using namespace documentation; -// return { -// "Renderable Kepler Orbits", -// "space_renderable_kepler_orbits", -// { -// { -// SegmentsInfo.identifier, -// new DoubleVerifier, -// Optional::No, -// SegmentsInfo.description -// }, -// { -// PathInfo.identifier, -// new StringVerifier, -// Optional::No, -// PathInfo.description -// }, -// { -// EccentricityColumnInfo.identifier, -// new StringVerifier, -// Optional::No, -// EccentricityColumnInfo.description -// }, -// { -// SemiMajorAxisColumnInfo.identifier, -// new StringVerifier, -// Optional::No, -// SemiMajorAxisColumnInfo.description -// }, -// { -// SemiMajorAxisUnitInfo.identifier, -// new DoubleVerifier, -// Optional::No, -// SemiMajorAxisUnitInfo.description -// }, -// { -// InclinationColumnInfo.identifier, -// new StringVerifier, -// Optional::No, -// InclinationColumnInfo.description -// }, -// { -// AscendingNodeColumnInfo.identifier, -// new StringVerifier, -// Optional::No, -// AscendingNodeColumnInfo.description -// }, -// { -// ArgumentOfPeriapsisColumnInfo.identifier, -// new StringVerifier, -// Optional::No, -// ArgumentOfPeriapsisColumnInfo.description -// }, -// { -// MeanAnomalyAtEpochColumnInfo.identifier, -// new StringVerifier, -// Optional::No, -// MeanAnomalyAtEpochColumnInfo.description -// }, -// { -// EpochColumnInfo.identifier, -// new StringVerifier, -// Optional::No, -// EpochColumnInfo.description -// } -// } -// }; -// } +documentation::Documentation RenderableSatellites::Documentation() { + using namespace documentation; + return { + "Renderable Kepler Orbits", + "space_renderable_kepler_orbits", + { + { + SegmentsInfo.identifier, + new DoubleVerifier, + Optional::No, + SegmentsInfo.description + }, + { + PathInfo.identifier, + new StringVerifier, + Optional::No, + PathInfo.description + }, + { + EccentricityColumnInfo.identifier, + new StringVerifier, + Optional::No, + EccentricityColumnInfo.description + }, + { + SemiMajorAxisColumnInfo.identifier, + new StringVerifier, + Optional::No, + SemiMajorAxisColumnInfo.description + }, + { + SemiMajorAxisUnitInfo.identifier, + new DoubleVerifier, + Optional::No, + SemiMajorAxisUnitInfo.description + }, + { + InclinationColumnInfo.identifier, + new StringVerifier, + Optional::No, + InclinationColumnInfo.description + }, + { + AscendingNodeColumnInfo.identifier, + new StringVerifier, + Optional::No, + AscendingNodeColumnInfo.description + }, + { + ArgumentOfPeriapsisColumnInfo.identifier, + new StringVerifier, + Optional::No, + ArgumentOfPeriapsisColumnInfo.description + }, + { + MeanAnomalyAtEpochColumnInfo.identifier, + new StringVerifier, + Optional::No, + MeanAnomalyAtEpochColumnInfo.description + }, + { + EpochColumnInfo.identifier, + new StringVerifier, + Optional::No, + EpochColumnInfo.description + } + } + }; +} -// RenderableSatellites::RenderableSatellites(const ghoul::Dictionary& dictionary) -// : Renderable(dictionary) -// , _path(PathInfo) -// , _nSegments(SegmentsInfo) -// , _eccentricityColumnName(EccentricityColumnInfo) -// , _semiMajorAxisColumnName(SemiMajorAxisColumnInfo) -// , _semiMajorAxisUnit(SemiMajorAxisUnitInfo) -// , _inclinationColumnName(InclinationColumnInfo) -// , _ascendingNodeColumnName(AscendingNodeColumnInfo) -// , _argumentOfPeriapsisColumnName(ArgumentOfPeriapsisColumnInfo) -// , _meanAnomalyAtEpochColumnName(MeanAnomalyAtEpochColumnInfo) -// , _epochColumnName(EpochColumnInfo) -// { -// documentation::testSpecificationAndThrow( -// Documentation(), -// dictionary, -// "RenderableSatellites" -// ); +RenderableSatellites::RenderableSatellites(const ghoul::Dictionary& dictionary) + : Renderable(dictionary) + , _path(PathInfo) + , _nSegments(SegmentsInfo) + , _eccentricityColumnName(EccentricityColumnInfo) + , _semiMajorAxisColumnName(SemiMajorAxisColumnInfo) + , _semiMajorAxisUnit(SemiMajorAxisUnitInfo) + , _inclinationColumnName(InclinationColumnInfo) + , _ascendingNodeColumnName(AscendingNodeColumnInfo) + , _argumentOfPeriapsisColumnName(ArgumentOfPeriapsisColumnInfo) + , _meanAnomalyAtEpochColumnName(MeanAnomalyAtEpochColumnInfo) + , _epochColumnName(EpochColumnInfo) +{ + documentation::testSpecificationAndThrow( + Documentation(), + dictionary, + "RenderableSatellites" + ); -// _nSegments = -// static_cast(dictionary.value(SegmentsInfo.identifier)); -// _path = -// dictionary.value(PathInfo.identifier); -// _eccentricityColumnName = -// dictionary.value(EccentricityColumnInfo.identifier); -// _semiMajorAxisColumnName = -// dictionary.value(SemiMajorAxisColumnInfo.identifier); -// _inclinationColumnName = -// dictionary.value(InclinationColumnInfo.identifier); -// _ascendingNodeColumnName = -// dictionary.value(AscendingNodeColumnInfo.identifier); -// _argumentOfPeriapsisColumnName = -// dictionary.value(ArgumentOfPeriapsisColumnInfo.identifier); -// _meanAnomalyAtEpochColumnName = -// dictionary.value(MeanAnomalyAtEpochColumnInfo.identifier); -// _epochColumnName = -// dictionary.value(EpochColumnInfo.identifier); -// _semiMajorAxisUnit = -// dictionary.value(SemiMajorAxisUnitInfo.identifier); + _nSegments = + static_cast(dictionary.value(SegmentsInfo.identifier)); + _path = + dictionary.value(PathInfo.identifier); + _eccentricityColumnName = + dictionary.value(EccentricityColumnInfo.identifier); + _semiMajorAxisColumnName = + dictionary.value(SemiMajorAxisColumnInfo.identifier); + _inclinationColumnName = + dictionary.value(InclinationColumnInfo.identifier); + _ascendingNodeColumnName = + dictionary.value(AscendingNodeColumnInfo.identifier); + _argumentOfPeriapsisColumnName = + dictionary.value(ArgumentOfPeriapsisColumnInfo.identifier); + _meanAnomalyAtEpochColumnName = + dictionary.value(MeanAnomalyAtEpochColumnInfo.identifier); + _epochColumnName = + dictionary.value(EpochColumnInfo.identifier); + _semiMajorAxisUnit = + dictionary.value(SemiMajorAxisUnitInfo.identifier); -// addPropertySubOwner(_appearance); -// addProperty(_path); -// addProperty(_nSegments); -// addProperty(_semiMajorAxisUnit); + addPropertySubOwner(_appearance); + addProperty(_path); + addProperty(_nSegments); + addProperty(_semiMajorAxisUnit); -// /* -// * test -// */ +/* +* test +*/ -// const std::string& file = dictionary.value(KeyFile); -// int lineNum = 1; -// if (dictionary.hasKeyAndValue(KeyLineNum)) { -// lineNum = static_cast(dictionary.value(KeyLineNum)); -// readTLEFile(file, lineNum); -// } -// } -// // The list of leap years only goes until 2056 as we need to touch this file then -// // again anyway ;) -// const std::vector LeapYears = { -// 1956, 1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992, 1996, -// 2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040, -// 2044, 2048, 2052, 2056 -// }; + const std::string& file = dictionary.value(KeyFile); + readTLEFile(file); -// // Count the number of full days since the beginning of 2000 to the beginning of -// // the parameter 'year' -// int countDays(int year) { -// // Find the position of the current year in the vector, the difference -// // between its position and the position of 2000 (for J2000) gives the -// // number of leap years -// constexpr const int Epoch = 2000; -// constexpr const int DaysRegularYear = 365; -// constexpr const int DaysLeapYear = 366; +} + // The list of leap years only goes until 2056 as we need to touch this file then + // again anyway ;) + const std::vector LeapYears = { + 1956, 1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992, 1996, + 2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040, + 2044, 2048, 2052, 2056 + }; -// if (year == Epoch) { -// return 0; -// } + // Count the number of full days since the beginning of 2000 to the beginning of + // the parameter 'year' + int countDays(int year) { + // Find the position of the current year in the vector, the difference + // between its position and the position of 2000 (for J2000) gives the + // number of leap years + constexpr const int Epoch = 2000; + constexpr const int DaysRegularYear = 365; + constexpr const int DaysLeapYear = 366; -// // Get the position of the most recent leap year -// const auto lb = std::lower_bound(LeapYears.begin(), LeapYears.end(), year); + if (year == Epoch) { + return 0; + } -// // Get the position of the epoch -// const auto y2000 = std::find(LeapYears.begin(), LeapYears.end(), Epoch); + // Get the position of the most recent leap year + const auto lb = std::lower_bound(LeapYears.begin(), LeapYears.end(), year); -// // The distance between the two iterators gives us the number of leap years -// const int nLeapYears = static_cast(std::abs(std::distance(y2000, lb))); + // Get the position of the epoch + const auto y2000 = std::find(LeapYears.begin(), LeapYears.end(), Epoch); -// const int nYears = std::abs(year - Epoch); -// const int nRegularYears = nYears - nLeapYears; + // The distance between the two iterators gives us the number of leap years + const int nLeapYears = static_cast(std::abs(std::distance(y2000, lb))); -// // Get the total number of days as the sum of leap years + non leap years -// const int result = nRegularYears * DaysRegularYear + nLeapYears * DaysLeapYear; -// return result; -// } + const int nYears = std::abs(year - Epoch); + const int nRegularYears = nYears - nLeapYears; -// // Returns the number of leap seconds that lie between the {year, dayOfYear} -// // time point and { 2000, 1 } -// int countLeapSeconds(int year, int dayOfYear) { -// // Find the position of the current year in the vector; its position in -// // the vector gives the number of leap seconds -// struct LeapSecond { -// int year; -// int dayOfYear; -// bool operator<(const LeapSecond& rhs) const { -// return std::tie(year, dayOfYear) < std::tie(rhs.year, rhs.dayOfYear); -// } -// }; + // Get the total number of days as the sum of leap years + non leap years + const int result = nRegularYears * DaysRegularYear + nLeapYears * DaysLeapYear; + return result; + } -// const LeapSecond Epoch = { 2000, 1 }; + // Returns the number of leap seconds that lie between the {year, dayOfYear} + // time point and { 2000, 1 } + int countLeapSeconds(int year, int dayOfYear) { + // Find the position of the current year in the vector; its position in + // the vector gives the number of leap seconds + struct LeapSecond { + int year; + int dayOfYear; + bool operator<(const LeapSecond& rhs) const { + return std::tie(year, dayOfYear) < std::tie(rhs.year, rhs.dayOfYear); + } + }; -// // List taken from: https://www.ietf.org/timezones/data/leap-seconds.list -// static const std::vector LeapSeconds = { -// { 1972, 1 }, -// { 1972, 183 }, -// { 1973, 1 }, -// { 1974, 1 }, -// { 1975, 1 }, -// { 1976, 1 }, -// { 1977, 1 }, -// { 1978, 1 }, -// { 1979, 1 }, -// { 1980, 1 }, -// { 1981, 182 }, -// { 1982, 182 }, -// { 1983, 182 }, -// { 1985, 182 }, -// { 1988, 1 }, -// { 1990, 1 }, -// { 1991, 1 }, -// { 1992, 183 }, -// { 1993, 182 }, -// { 1994, 182 }, -// { 1996, 1 }, -// { 1997, 182 }, -// { 1999, 1 }, -// { 2006, 1 }, -// { 2009, 1 }, -// { 2012, 183 }, -// { 2015, 182 }, -// { 2017, 1 } -// }; + const LeapSecond Epoch = { 2000, 1 }; -// // Get the position of the last leap second before the desired date -// LeapSecond date { year, dayOfYear }; -// const auto it = std::lower_bound(LeapSeconds.begin(), LeapSeconds.end(), date); + // List taken from: https://www.ietf.org/timezones/data/leap-seconds.list + static const std::vector LeapSeconds = { + { 1972, 1 }, + { 1972, 183 }, + { 1973, 1 }, + { 1974, 1 }, + { 1975, 1 }, + { 1976, 1 }, + { 1977, 1 }, + { 1978, 1 }, + { 1979, 1 }, + { 1980, 1 }, + { 1981, 182 }, + { 1982, 182 }, + { 1983, 182 }, + { 1985, 182 }, + { 1988, 1 }, + { 1990, 1 }, + { 1991, 1 }, + { 1992, 183 }, + { 1993, 182 }, + { 1994, 182 }, + { 1996, 1 }, + { 1997, 182 }, + { 1999, 1 }, + { 2006, 1 }, + { 2009, 1 }, + { 2012, 183 }, + { 2015, 182 }, + { 2017, 1 } + }; -// // Get the position of the Epoch -// const auto y2000 = std::lower_bound( -// LeapSeconds.begin(), -// LeapSeconds.end(), -// Epoch -// ); + // Get the position of the last leap second before the desired date + LeapSecond date { year, dayOfYear }; + const auto it = std::lower_bound(LeapSeconds.begin(), LeapSeconds.end(), date); -// // The distance between the two iterators gives us the number of leap years -// const int nLeapSeconds = static_cast(std::abs(std::distance(y2000, it))); -// return nLeapSeconds; -// } + // Get the position of the Epoch + const auto y2000 = std::lower_bound( + LeapSeconds.begin(), + LeapSeconds.end(), + Epoch + ); -// double calculateSemiMajorAxis(double meanMotion) { -// constexpr const double GravitationalConstant = 6.6740831e-11; -// constexpr const double MassEarth = 5.9721986e24; -// constexpr const double muEarth = GravitationalConstant * MassEarth; + // The distance between the two iterators gives us the number of leap years + const int nLeapSeconds = static_cast(std::abs(std::distance(y2000, it))); + return nLeapSeconds; + } -// // Use Kepler's 3rd law to calculate semimajor axis -// // a^3 / P^2 = mu / (2pi)^2 -// // <=> a = ((mu * P^2) / (2pi^2))^(1/3) -// // with a = semimajor axis -// // P = period in seconds -// // mu = G*M_earth -// double period = std::chrono::seconds(std::chrono::hours(24)).count() / meanMotion; + double calculateSemiMajorAxis(double meanMotion) { + constexpr const double GravitationalConstant = 6.6740831e-11; + constexpr const double MassEarth = 5.9721986e24; + constexpr const double muEarth = GravitationalConstant * MassEarth; -// const double pisq = glm::pi() * glm::pi(); -// double semiMajorAxis = pow((muEarth * period*period) / (4 * pisq), 1.0 / 3.0); + // Use Kepler's 3rd law to calculate semimajor axis + // a^3 / P^2 = mu / (2pi)^2 + // <=> a = ((mu * P^2) / (2pi^2))^(1/3) + // with a = semimajor axis + // P = period in seconds + // mu = G*M_earth + double period = std::chrono::seconds(std::chrono::hours(24)).count() / meanMotion; -// // We need the semi major axis in km instead of m -// return semiMajorAxis / 1000.0; -// } + const double pisq = glm::pi() * glm::pi(); + double semiMajorAxis = pow((muEarth * period*period) / (4 * pisq), 1.0 / 3.0); -// double epochFromSubstring(const std::string& epochString) { -// // The epochString is in the form: -// // YYDDD.DDDDDDDD -// // With YY being the last two years of the launch epoch, the first DDD the day -// // of the year and the remaning a fractional part of the day + // We need the semi major axis in km instead of m + return semiMajorAxis / 1000.0; + } -// // The main overview of this function: -// // 1. Reconstruct the full year from the YY part -// // 2. Calculate the number of seconds since the beginning of the year -// // 2.a Get the number of full days since the beginning of the year -// // 2.b If the year is a leap year, modify the number of days -// // 3. Convert the number of days to a number of seconds -// // 4. Get the number of leap seconds since January 1st, 2000 and remove them -// // 5. Adjust for the fact the epoch starts on 1st Januaray at 12:00:00, not -// // midnight +double epochFromSubstring(const std::string& epochString) { + // The epochString is in the form: + // YYDDD.DDDDDDDD + // With YY being the last two years of the launch epoch, the first DDD the day + // of the year and the remaning a fractional part of the day -// // According to https://celestrak.com/columns/v04n03/ -// // Apparently, US Space Command sees no need to change the two-line element -// // set format yet since no artificial earth satellites existed prior to 1957. -// // By their reasoning, two-digit years from 57-99 correspond to 1957-1999 and -// // those from 00-56 correspond to 2000-2056. We'll see each other again in 2057! + // The main overview of this function: + // 1. Reconstruct the full year from the YY part + // 2. Calculate the number of seconds since the beginning of the year + // 2.a Get the number of full days since the beginning of the year + // 2.b If the year is a leap year, modify the number of days + // 3. Convert the number of days to a number of seconds + // 4. Get the number of leap seconds since January 1st, 2000 and remove them + // 5. Adjust for the fact the epoch starts on 1st Januaray at 12:00:00, not + // midnight -// // 1. Get the full year -// std::string yearPrefix = [y = epochString.substr(0, 2)](){ -// int year = std::atoi(y.c_str()); -// return year >= 57 ? "19" : "20"; -// }(); -// const int year = std::atoi((yearPrefix + epochString.substr(0, 2)).c_str()); -// const int daysSince2000 = countDays(year); + // According to https://celestrak.com/columns/v04n03/ + // Apparently, US Space Command sees no need to change the two-line element + // set format yet since no artificial earth satellites existed prior to 1957. + // By their reasoning, two-digit years from 57-99 correspond to 1957-1999 and + // those from 00-56 correspond to 2000-2056. We'll see each other again in 2057! -// // 2. -// // 2.a -// double daysInYear = std::atof(epochString.substr(2).c_str()); + // 1. Get the full year + std::string yearPrefix = [y = epochString.substr(0, 2)](){ + int year = std::atoi(y.c_str()); + return year >= 57 ? "19" : "20"; + }(); + const int year = std::atoi((yearPrefix + epochString.substr(0, 2)).c_str()); + const int daysSince2000 = countDays(year); -// // 2.b -// const bool isInLeapYear = std::find( -// LeapYears.begin(), -// LeapYears.end(), -// year -// ) != LeapYears.end(); -// if (isInLeapYear && daysInYear >= 60) { -// // We are in a leap year, so we have an effective day more if we are -// // beyond the end of february (= 31+29 days) -// --daysInYear; -// } + // 2. + // 2.a + double daysInYear = std::atof(epochString.substr(2).c_str()); -// // 3 -// using namespace std::chrono; -// const int SecondsPerDay = static_cast(seconds(hours(24)).count()); -// //Need to subtract 1 from daysInYear since it is not a zero-based count -// const double nSecondsSince2000 = (daysSince2000 + daysInYear - 1) * SecondsPerDay; + // 2.b + const bool isInLeapYear = std::find( + LeapYears.begin(), + LeapYears.end(), + year + ) != LeapYears.end(); + if (isInLeapYear && daysInYear >= 60) { + // We are in a leap year, so we have an effective day more if we are + // beyond the end of february (= 31+29 days) + --daysInYear; + } -// // 4 -// // We need to remove additionbal leap seconds past 2000 and add them prior to -// // 2000 to sync up the time zones -// const double nLeapSecondsOffset = -countLeapSeconds( -// year, -// static_cast(std::floor(daysInYear)) -// ); + // 3 + using namespace std::chrono; + const int SecondsPerDay = static_cast(seconds(hours(24)).count()); + //Need to subtract 1 from daysInYear since it is not a zero-based count + const double nSecondsSince2000 = (daysSince2000 + daysInYear - 1) * SecondsPerDay; -// // 5 -// const double nSecondsEpochOffset = static_cast( -// seconds(hours(12)).count() -// ); + // 4 + // We need to remove additionbal leap seconds past 2000 and add them prior to + // 2000 to sync up the time zones + const double nLeapSecondsOffset = -countLeapSeconds( + year, + static_cast(std::floor(daysInYear)) + ); -// // Combine all of the values -// const double epoch = nSecondsSince2000 + nLeapSecondsOffset - nSecondsEpochOffset; -// return epoch; -// } + // 5 + const double nSecondsEpochOffset = static_cast( + seconds(hours(12)).count() + ); + + // Combine all of the values + const double epoch = nSecondsSince2000 + nLeapSecondsOffset - nSecondsEpochOffset; + return epoch; + } -// void RenderableSatellites::readTLEFile(const std::string& filename, int lineNum){ -// ghoul_assert(FileSys.fileExists(filename), "The filename must exist"); +void RenderableSatellites::readTLEFile(const std::string& filename){ + ghoul_assert(FileSys.fileExists(filename), "The filename must exist"); -// std::ifstream file; -// file.exceptions(std::ofstream::failbit | std::ofstream::badbit); -// file.open(filename); + std::ifstream file; + file.exceptions(std::ofstream::failbit | std::ofstream::badbit); + file.open(filename); -// // All of the Kepler element information -// struct { -// double inclination = 0.0; -// double semiMajorAxis = 0.0; -// double ascendingNode = 0.0; -// double eccentricity = 0.0; -// double argumentOfPeriapsis = 0.0; -// double meanAnomaly = 0.0; -// double meanMotion = 0.0; -// double epoch = 0.0; -// } keplerElements; + // All of the Kepler element information + struct { + double inclination = 0.0; + double semiMajorAxis = 0.0; + double ascendingNode = 0.0; + double eccentricity = 0.0; + double argumentOfPeriapsis = 0.0; + double meanAnomaly = 0.0; + double meanMotion = 0.0; + double epoch = 0.0; + } keplerElements; -// std::string line; -// // Loop through and throw out lines until getting to the linNum of interest -// for (int i = 1; i < lineNum; ++i) { -// std::getline(file, line); -// } -// std::getline(file, line); // Throw out the TLE title line (1st) + std::string line; + // Loop through and throw out lines until getting to the linNum of interest + for (int i = 1; i < lineNum; ++i) { + std::getline(file, line); + } + std::getline(file, line); // Throw out the TLE title line (1st) -// std::getline(file, line); // Get line 1 of TLE format -// if (line[0] == '1') { -// // First line -// // Field Columns Content -// // 1 01-01 Line number -// // 2 03-07 Satellite number -// // 3 08-08 Classification (U = Unclassified) -// // 4 10-11 International Designator (Last two digits of launch year) -// // 5 12-14 International Designator (Launch number of the year) -// // 6 15-17 International Designator(piece of the launch) A -// // 7 19-20 Epoch Year(last two digits of year) -// // 8 21-32 Epoch(day of the year and fractional portion of the day) -// // 9 34-43 First Time Derivative of the Mean Motion divided by two -// // 10 45-52 Second Time Derivative of Mean Motion divided by six -// // 11 54-61 BSTAR drag term(decimal point assumed)[10] - 11606 - 4 -// // 12 63-63 The "Ephemeris type" -// // 13 65-68 Element set number.Incremented when a new TLE is generated -// // 14 69-69 Checksum (modulo 10) -// keplerElements.epoch = epochFromSubstring(line.substr(18, 14)); -// } else { -// throw ghoul::RuntimeError(fmt::format( -// "File {} @ line {} does not have '1' header", filename, lineNum + 1 -// )); -// } + std::getline(file, line); // Get line 1 of TLE format + if (line[0] == '1') { + // First line + // Field Columns Content + // 1 01-01 Line number + // 2 03-07 Satellite number + // 3 08-08 Classification (U = Unclassified) + // 4 10-11 International Designator (Last two digits of launch year) + // 5 12-14 International Designator (Launch number of the year) + // 6 15-17 International Designator(piece of the launch) A + // 7 19-20 Epoch Year(last two digits of year) + // 8 21-32 Epoch(day of the year and fractional portion of the day) + // 9 34-43 First Time Derivative of the Mean Motion divided by two + // 10 45-52 Second Time Derivative of Mean Motion divided by six + // 11 54-61 BSTAR drag term(decimal point assumed)[10] - 11606 - 4 + // 12 63-63 The "Ephemeris type" + // 13 65-68 Element set number.Incremented when a new TLE is generated + // 14 69-69 Checksum (modulo 10) + keplerElements.epoch = epochFromSubstring(line.substr(18, 14)); + } else { + throw ghoul::RuntimeError(fmt::format( + "File {} @ line {} does not have '1' header", filename, lineNum + 1 + )); + } -// std::getline(file, line); // Get line 2 of TLE format -// if (line[0] == '2') { -// // Second line -// // Field Columns Content -// // 1 01-01 Line number -// // 2 03-07 Satellite number -// // 3 09-16 Inclination (degrees) -// // 4 18-25 Right ascension of the ascending node (degrees) -// // 5 27-33 Eccentricity (decimal point assumed) -// // 6 35-42 Argument of perigee (degrees) -// // 7 44-51 Mean Anomaly (degrees) -// // 8 53-63 Mean Motion (revolutions per day) -// // 9 64-68 Revolution number at epoch (revolutions) -// // 10 69-69 Checksum (modulo 10) + std::getline(file, line); // Get line 2 of TLE format + if (line[0] == '2') { + // Second line + // Field Columns Content + // 1 01-01 Line number + // 2 03-07 Satellite number + // 3 09-16 Inclination (degrees) + // 4 18-25 Right ascension of the ascending node (degrees) + // 5 27-33 Eccentricity (decimal point assumed) + // 6 35-42 Argument of perigee (degrees) + // 7 44-51 Mean Anomaly (degrees) + // 8 53-63 Mean Motion (revolutions per day) + // 9 64-68 Revolution number at epoch (revolutions) + // 10 69-69 Checksum (modulo 10) -// std::stringstream stream; -// stream.exceptions(std::ios::failbit); + std::stringstream stream; + stream.exceptions(std::ios::failbit); -// // Get inclination -// stream.str(line.substr(8, 8)); -// stream >> keplerElements.inclination; -// stream.clear(); + // Get inclination + stream.str(line.substr(8, 8)); + stream >> keplerElements.inclination; + stream.clear(); -// // Get Right ascension of the ascending node -// stream.str(line.substr(17, 8)); -// stream >> keplerElements.ascendingNode; -// stream.clear(); + // Get Right ascension of the ascending node + stream.str(line.substr(17, 8)); + stream >> keplerElements.ascendingNode; + stream.clear(); -// // Get Eccentricity -// stream.str("0." + line.substr(26, 7)); -// stream >> keplerElements.eccentricity; -// stream.clear(); + // Get Eccentricity + stream.str("0." + line.substr(26, 7)); + stream >> keplerElements.eccentricity; + stream.clear(); -// // Get argument of periapsis -// stream.str(line.substr(34, 8)); -// stream >> keplerElements.argumentOfPeriapsis; -// stream.clear(); + // Get argument of periapsis + stream.str(line.substr(34, 8)); + stream >> keplerElements.argumentOfPeriapsis; + stream.clear(); -// // Get mean anomaly -// stream.str(line.substr(43, 8)); -// stream >> keplerElements.meanAnomaly; -// stream.clear(); + // Get mean anomaly + stream.str(line.substr(43, 8)); + stream >> keplerElements.meanAnomaly; + stream.clear(); -// // Get mean motion -// stream.str(line.substr(52, 11)); -// stream >> keplerElements.meanMotion; -// } else { -// throw ghoul::RuntimeError(fmt::format( -// "File {} @ line {} does not have '2' header", filename, lineNum + 2 -// )); -// } -// file.close(); + // Get mean motion + stream.str(line.substr(52, 11)); + stream >> keplerElements.meanMotion; + } else { + throw ghoul::RuntimeError(fmt::format( + "File {} @ line {} does not have '2' header", filename, lineNum + 2 + )); + } + file.close(); -// // Calculate the semi major axis based on the mean motion using kepler's laws -// keplerElements.semiMajorAxis = calculateSemiMajorAxis(keplerElements.meanMotion); + // Calculate the semi major axis based on the mean motion using kepler's laws + keplerElements.semiMajorAxis = calculateSemiMajorAxis(keplerElements.meanMotion); -// // Converting the mean motion (revolutions per day) to period (seconds per revolution) -// using namespace std::chrono; -// double period = seconds(hours(24)).count() / keplerElements.meanMotion; + // Converting the mean motion (revolutions per day) to period (seconds per revolution) + using namespace std::chrono; + double period = seconds(hours(24)).count() / keplerElements.meanMotion; -// //TODO: fix obv -// size_t i = 0; + /* + KeplerTranslation setKeplerElements( + keplerElements.eccentricity, + keplerElements.semiMajorAxis, + keplerElements.inclination, + keplerElements.ascendingNode, + keplerElements.argumentOfPeriapsis, + keplerElements.meanAnomaly, + period, + keplerElements.epoch + ); + */ +} -// _orbits[i++] = KeplerTranslation::KeplerOrbit{ -// keplerElements.eccentricity, -// keplerElements.semiMajorAxis, -// keplerElements.inclination, -// keplerElements.ascendingNode, -// keplerElements.argumentOfPeriapsis, -// keplerElements.meanAnomaly, -// period, -// keplerElements.epoch -// }; +/* +* !test +*/ +RenderableSatellites::~RenderableSatellites() { -// /* -// KeplerTranslation setKeplerElements( -// keplerElements.eccentricity, -// keplerElements.semiMajorAxis, -// keplerElements.inclination, -// keplerElements.ascendingNode, -// keplerElements.argumentOfPeriapsis, -// keplerElements.meanAnomaly, -// period, -// keplerElements.epoch -// ); -// */ -// } - -// /* -// * !test -// */ -// RenderableSatellites::~RenderableSatellites() { - -// } +} -// void RenderableSatellites::initialize() { -// readFromCsvFile(); -// updateBuffers(); +void RenderableSatellites::initialize() { + readFromCsvFile(); + updateBuffers(); -// _path.onChange([this]() { -// readFromCsvFile(); -// updateBuffers(); -// }); + _path.onChange([this]() { + readFromCsvFile(); + updateBuffers(); + }); -// _semiMajorAxisUnit.onChange([this]() { -// readFromCsvFile(); -// updateBuffers(); -// }); + _semiMajorAxisUnit.onChange([this]() { + readFromCsvFile(); + updateBuffers(); + }); -// _nSegments.onChange([this]() { -// updateBuffers(); -// }); -// } + _nSegments.onChange([this]() { + updateBuffers(); + }); +} -// void RenderableSatellites::deinitialize() { +void RenderableSatellites::deinitialize() { -// } +} -// void RenderableSatellites::initializeGL() { -// glGenVertexArrays(1, &_vertexArray); -// glGenBuffers(1, &_vertexBuffer); -// glGenBuffers(1, &_indexBuffer); +void RenderableSatellites::initializeGL() { + glGenVertexArrays(1, &_vertexArray); + glGenBuffers(1, &_vertexBuffer); + glGenBuffers(1, &_indexBuffer); -// _programObject = SpaceModule::ProgramObjectManager.request( -// ProgramName, -// []() -> std::unique_ptr { -// return global::renderEngine.buildRenderProgram( -// ProgramName, -// absPath("${MODULE_SPACE}/shaders/RenderableKeplerOrbits_vs.glsl"), -// absPath("${MODULE_SPACE}/shaders/RenderableKeplerOrbits_fs.glsl") -// ); -// } -// ); + _programObject = SpaceModule::ProgramObjectManager.request( + ProgramName, + []() -> std::unique_ptr { + return global::renderEngine.buildRenderProgram( + ProgramName, + absPath("${MODULE_SPACE}/shaders/RenderableKeplerOrbits_vs.glsl"), + absPath("${MODULE_SPACE}/shaders/RenderableKeplerOrbits_fs.glsl") + ); + } + ); -// _uniformCache.opacity = _programObject->uniformLocation("opacity"); -// _uniformCache.modelView = _programObject->uniformLocation("modelViewTransform"); -// _uniformCache.projection = _programObject->uniformLocation("projectionTransform"); -// _uniformCache.color = _programObject->uniformLocation("color"); -// _uniformCache.useLineFade = _programObject->uniformLocation("useLineFade"); -// _uniformCache.lineFade = _programObject->uniformLocation("lineFade"); + _uniformCache.opacity = _programObject->uniformLocation("opacity"); + _uniformCache.modelView = _programObject->uniformLocation("modelViewTransform"); + _uniformCache.projection = _programObject->uniformLocation("projectionTransform"); + _uniformCache.color = _programObject->uniformLocation("color"); + _uniformCache.useLineFade = _programObject->uniformLocation("useLineFade"); + _uniformCache.lineFade = _programObject->uniformLocation("lineFade"); -// setRenderBin(Renderable::RenderBin::Overlay); -// } + setRenderBin(Renderable::RenderBin::Overlay); +} -// void RenderableSatellites::deinitializeGL() { -// SpaceModule::ProgramObjectManager.release(ProgramName); +void RenderableSatellites::deinitializeGL() { + SpaceModule::ProgramObjectManager.release(ProgramName); -// glDeleteBuffers(1, &_vertexBuffer); -// glDeleteBuffers(1, &_indexBuffer); -// glDeleteVertexArrays(1, &_vertexArray); -// } + glDeleteBuffers(1, &_vertexBuffer); + glDeleteBuffers(1, &_indexBuffer); + glDeleteVertexArrays(1, &_vertexArray); +} -// bool RenderableSatellites::isReady() const { -// return true; -// } +bool RenderableSatellites::isReady() const { + return true; +} -// void RenderableSatellites::update(const UpdateData&) {} +void RenderableSatellites::update(const UpdateData&) {} -// void RenderableSatellites::render(const RenderData& data, RendererTasks&) { -// _programObject->activate(); -// _programObject->setUniform(_uniformCache.opacity, _opacity); +void RenderableSatellites::render(const RenderData& data, RendererTasks&) { + _programObject->activate(); + _programObject->setUniform(_uniformCache.opacity, _opacity); -// glm::dmat4 modelTransform = -// glm::translate(glm::dmat4(1.0), data.modelTransform.translation) * -// glm::dmat4(data.modelTransform.rotation) * -// glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale)); + glm::dmat4 modelTransform = + glm::translate(glm::dmat4(1.0), data.modelTransform.translation) * + glm::dmat4(data.modelTransform.rotation) * + glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale)); -// _programObject->setUniform( -// _uniformCache.modelView, -// data.camera.combinedViewMatrix() * modelTransform -// ); + _programObject->setUniform( + _uniformCache.modelView, + data.camera.combinedViewMatrix() * modelTransform + ); -// _programObject->setUniform(_uniformCache.projection, data.camera.projectionMatrix()); -// _programObject->setUniform(_uniformCache.color, _appearance.lineColor); -// //_programObject->setUniform(_uniformCache.useLineFade, _appearance.useLineFade); + _programObject->setUniform(_uniformCache.projection, data.camera.projectionMatrix()); + _programObject->setUniform(_uniformCache.color, _appearance.lineColor); + //_programObject->setUniform(_uniformCache.useLineFade, _appearance.useLineFade); -// /*if (_appearance.useLineFade) { -// _programObject->setUniform(_uniformCache.lineFade, _appearance.lineFade); -// }*/ + /*if (_appearance.useLineFade) { + _programObject->setUniform(_uniformCache.lineFade, _appearance.lineFade); + }*/ -// glDepthMask(false); -// //glBlendFunc(GL_SRC_ALPHA, GL_ONE); + glDepthMask(false); + //glBlendFunc(GL_SRC_ALPHA, GL_ONE); -// glBindVertexArray(_vertexArray); -// glDrawElements(GL_LINES, -// static_cast(_indexBufferData.size()), -// GL_UNSIGNED_INT, -// 0); -// glBindVertexArray(0); -// _programObject->deactivate(); -// } + glBindVertexArray(_vertexArray); + glDrawElements(GL_LINES, + static_cast(_indexBufferData.size()), + GL_UNSIGNED_INT, + 0); + glBindVertexArray(0); + _programObject->deactivate(); +} -// void RenderableSatellites::updateBuffers() { -// const size_t nVerticesPerOrbit = _nSegments + 1; -// _vertexBufferData.resize(_orbits.size() * nVerticesPerOrbit); -// _indexBufferData.resize(_orbits.size() * _nSegments * 2); +void RenderableSatellites::updateBuffers() { + const size_t nVerticesPerOrbit = _nSegments + 1; + _vertexBufferData.resize(_orbits.size() * nVerticesPerOrbit); + _indexBufferData.resize(_orbits.size() * _nSegments * 2); -// size_t orbitIndex = 0; -// size_t elementIndex = 0; -// for (const auto& orbit : _orbits) { -// KeplerTranslation keplerTranslation(orbit); -// const double period = orbit.period(); -// for (size_t i = 0; i <= _nSegments; ++i) { -// size_t index = orbitIndex * nVerticesPerOrbit + i; + size_t orbitIndex = 0; + size_t elementIndex = 0; + for (const auto& orbit : _orbits) { // _orbits blir TLEData + // KeplerTranslation setKeplerElements(TLEData); + KeplerTranslation keplerTranslation(orbit); // Existerar inte längre + const double period = orbit.period(); + for (size_t i = 0; i <= _nSegments; ++i) { + size_t index = orbitIndex * nVerticesPerOrbit + i; -// double timeOffset = period * -// static_cast(i) / static_cast(_nSegments); -// glm::vec3 position = -// keplerTranslation.position(Time(orbit.epoch + timeOffset)); + double timeOffset = period * + static_cast(i) / static_cast(_nSegments); + glm::vec3 position = + keplerTranslation.position(Time(orbit.epoch + timeOffset)); + //keplerTranslation.position(orbit.epoch + timeOffset); -// _vertexBufferData[index].x = position.x; -// _vertexBufferData[index].y = position.y; -// _vertexBufferData[index].z = position.z; -// _vertexBufferData[index].time = timeOffset; -// if (i > 0) { -// _indexBufferData[elementIndex++] = static_cast(index) - 1; -// _indexBufferData[elementIndex++] = static_cast(index); -// } -// } -// ++orbitIndex; -// } + + _vertexBufferData[index].x = position.x; + _vertexBufferData[index].y = position.y; + _vertexBufferData[index].z = position.z; + _vertexBufferData[index].time = timeOffset; + if (i > 0) { + _indexBufferData[elementIndex++] = static_cast(index) - 1; + _indexBufferData[elementIndex++] = static_cast(index); + } + } + ++orbitIndex; + } -// glBindVertexArray(_vertexArray); + glBindVertexArray(_vertexArray); -// glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer); -// glBufferData(GL_ARRAY_BUFFER, -// _vertexBufferData.size() * sizeof(TrailVBOLayout), -// _vertexBufferData.data(), -// GL_STATIC_DRAW -// ); + glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer); + glBufferData(GL_ARRAY_BUFFER, + _vertexBufferData.size() * sizeof(TrailVBOLayout), + _vertexBufferData.data(), + GL_STATIC_DRAW + ); -// glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _indexBuffer); -// glBufferData(GL_ELEMENT_ARRAY_BUFFER, -// _indexBufferData.size() * sizeof(int), -// _indexBufferData.data(), -// GL_STATIC_DRAW -// ); + glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _indexBuffer); + glBufferData(GL_ELEMENT_ARRAY_BUFFER, + _indexBufferData.size() * sizeof(int), + _indexBufferData.data(), + GL_STATIC_DRAW + ); -// glBindVertexArray(0); -// } + glBindVertexArray(0); +} -// void RenderableSatellites::readFromCsvFile() { -// std::vector columns = { -// _eccentricityColumnName, -// _semiMajorAxisColumnName, -// _inclinationColumnName, -// _ascendingNodeColumnName, -// _argumentOfPeriapsisColumnName, -// _meanAnomalyAtEpochColumnName, -// _epochColumnName, -// }; +void RenderableSatellites::readFromCsvFile() { + std::vector columns = { + _eccentricityColumnName, + _semiMajorAxisColumnName, + _inclinationColumnName, + _ascendingNodeColumnName, + _argumentOfPeriapsisColumnName, + _meanAnomalyAtEpochColumnName, + _epochColumnName, + }; -// std::vector> data = -// ghoul::loadCSVFile(_path, columns, false); + std::vector> data = + ghoul::loadCSVFile(_path, columns, false); -// _orbits.resize(data.size()); + _orbits.resize(data.size()); -// size_t i = 0; -// for (const std::vector& line : data) { -// _orbits[i++] = KeplerTranslation::KeplerOrbit{ -// std::stof(line[0]), -// _semiMajorAxisUnit * std::stof(line[1]) / 1000.0, -// std::stof(line[2]), -// std::stof(line[3]), -// std::stof(line[4]), -// std::stof(line[5]), -// std::stof(line[6]) -// }; -// } -// } + size_t i = 0; + for (const std::vector& line : data) { + _orbits[i++] = KeplerTranslation::KeplerOrbit{ + std::stof(line[0]), + _semiMajorAxisUnit * std::stof(line[1]) / 1000.0, + std::stof(line[2]), + std::stof(line[3]), + std::stof(line[4]), + std::stof(line[5]), + std::stof(line[6]) + }; + } +} -// } +} diff --git a/modules/space/rendering/renderablesatellites.h b/modules/space/rendering/renderablesatellites.h index 4832d812eb..6aee43d8d6 100644 --- a/modules/space/rendering/renderablesatellites.h +++ b/modules/space/rendering/renderablesatellites.h @@ -1,128 +1,128 @@ -// // /**************************************************************************************** -// // * * -// // * OpenSpace * -// // * * -// // * Copyright (c) 2014-2018 * -// // * * -// // * Permission is hereby granted, free of charge, to any person obtaining a copy of this * -// // * software and associated documentation files (the "Software"), to deal in the Software * -// // * without restriction, including without limitation the rights to use, copy, modify, * -// // * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * -// // * permit persons to whom the Software is furnished to do so, subject to the following * -// // * conditions: * -// // * * -// // * The above copyright notice and this permission notice shall be included in all copies * -// // * or substantial portions of the Software. * -// // * * -// // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * -// // * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * -// // * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * -// // * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * -// // * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * -// // * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * -// // ****************************************************************************************/ +// /**************************************************************************************** +// * * +// * OpenSpace * +// * * +// * Copyright (c) 2014-2018 * +// * * +// * Permission is hereby granted, free of charge, to any person obtaining a copy of this * +// * software and associated documentation files (the "Software"), to deal in the Software * +// * without restriction, including without limitation the rights to use, copy, modify, * +// * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * +// * permit persons to whom the Software is furnished to do so, subject to the following * +// * conditions: * +// * * +// * The above copyright notice and this permission notice shall be included in all copies * +// * or substantial portions of the Software. * +// * * +// * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * +// * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * +// * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * +// * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * +// * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * +// * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * +// ****************************************************************************************/ -// #include +#include -// #include -// #include +#include +#include -// // #include -// #include -// #include +// #include +#include +#include -// #include -// #include +#include +#include -// #ifndef __OPENSPACE_MODULE_BASE___RenderableSatellites___H__ -// #define __OPENSPACE_MODULE_BASE___RenderableSatellites___H__ +#ifndef __OPENSPACE_MODULE_BASE___RenderableSatellites___H__ +#define __OPENSPACE_MODULE_BASE___RenderableSatellites___H__ -// namespace openspace { +namespace openspace { -// class RenderableSatellites : public Renderable { -// public: -// RenderableSatellites(const ghoul::Dictionary& dictionary); -// virtual ~RenderableSatellites(); + class RenderableSatellites : public Renderable { + public: + RenderableSatellites(const ghoul::Dictionary& dictionary); + virtual ~RenderableSatellites(); -// void initialize() override; -// void deinitialize() override; -// void initializeGL() override; -// void deinitializeGL() override; + void initialize() override; + void deinitialize() override; + void initializeGL() override; + void deinitializeGL() override; -// bool isReady() const override; + bool isReady() const override; -// void render(const RenderData& data, RendererTasks& rendererTask) override; -// void update(const UpdateData& data) override; + void render(const RenderData& data, RendererTasks& rendererTask) override; + void update(const UpdateData& data) override; -// /* -// void setKeplerElements(double eccentricity, double semiMajorAxis, double inclination, -// double ascendingNode, double argumentOfPeriapsis, double meanAnomalyAtEpoch, -// double orbitalPeriod, double epoch); -// */ + /* + void setKeplerElements(double eccentricity, double semiMajorAxis, double inclination, + double ascendingNode, double argumentOfPeriapsis, double meanAnomalyAtEpoch, + double orbitalPeriod, double epoch); + */ -// static documentation::Documentation Documentation(); + static documentation::Documentation Documentation(); -// private: -// /// The layout of the VBOs -// struct TrailVBOLayout { -// float x, y, z, time; -// }; + private: + /// The layout of the VBOs + struct TrailVBOLayout { + float x, y, z, time; + }; -// /// The backend storage for the vertex buffer object containing all points for this -// /// trail. -// std::vector _vertexBufferData; + /// The backend storage for the vertex buffer object containing all points for this + /// trail. + std::vector _vertexBufferData; -// /// The index array that is potentially used in the draw call. If this is empty, no -// /// element draw call is used. -// std::vector _indexBufferData; + /// The index array that is potentially used in the draw call. If this is empty, no + /// element draw call is used. + std::vector _indexBufferData; -// GLuint _vertexArray; -// GLuint _vertexBuffer; -// GLuint _indexBuffer; + GLuint _vertexArray; + GLuint _vertexBuffer; + GLuint _indexBuffer; -// void readFromCsvFile(); -// void updateBuffers(); + void readFromCsvFile(); + void updateBuffers(); -// std::vector _orbits; -// ghoul::opengl::ProgramObject* _programObject; -// //ghoul::ObjectManager* _objectManager; + std::vector _orbits; + ghoul::opengl::ProgramObject* _programObject; + //ghoul::ObjectManager* _objectManager; -// properties::StringProperty _path; -// properties::UIntProperty _nSegments; + properties::StringProperty _path; + properties::UIntProperty _nSegments; -// properties::StringProperty _eccentricityColumnName; -// properties::StringProperty _semiMajorAxisColumnName; -// properties::DoubleProperty _semiMajorAxisUnit; -// properties::StringProperty _inclinationColumnName; -// properties::StringProperty _ascendingNodeColumnName; -// properties::StringProperty _argumentOfPeriapsisColumnName; -// properties::StringProperty _meanAnomalyAtEpochColumnName; -// properties::StringProperty _epochColumnName; + properties::StringProperty _eccentricityColumnName; + properties::StringProperty _semiMajorAxisColumnName; + properties::DoubleProperty _semiMajorAxisUnit; + properties::StringProperty _inclinationColumnName; + properties::StringProperty _ascendingNodeColumnName; + properties::StringProperty _argumentOfPeriapsisColumnName; + properties::StringProperty _meanAnomalyAtEpochColumnName; + properties::StringProperty _epochColumnName; -// RenderableTrail::Appearance _appearance; + RenderableTrail::Appearance _appearance; -// UniformCache(opacity, modelView, projection, color, useLineFade, lineFade) -// _uniformCache; + UniformCache(opacity, modelView, projection, color, useLineFade, lineFade) + _uniformCache; -// /** -// * Reads the provided TLE file and calles the KeplerTranslation::setKeplerElments -// * method with the correct values. If \p filename is a valid TLE file but contains -// * disallowed values (see KeplerTranslation::setKeplerElements), a -// * KeplerTranslation::RangeError is thrown. -// * -// * \param filename The path to the file that contains the TLE file. -// * \param lineNum The line number in the file where the set of 3 TLE lines starts -// * -// * \throw std::system_error if the TLE file is malformed (does not contain at least -// * two lines that start with \c 1 and \c 2. -// * \throw KeplerTranslation::RangeError If the Keplerian elements are outside of -// * the valid range supported by Kepler::setKeplerElements -// * \pre The \p filename must exist -// */ -// void readTLEFile(const std::string& filename, int lineNum); -// }; + /** + * Reads the provided TLE file and calles the KeplerTranslation::setKeplerElments + * method with the correct values. If \p filename is a valid TLE file but contains + * disallowed values (see KeplerTranslation::setKeplerElements), a + * KeplerTranslation::RangeError is thrown. + * + * \param filename The path to the file that contains the TLE file. + * \param lineNum The line number in the file where the set of 3 TLE lines starts + * + * \throw std::system_error if the TLE file is malformed (does not contain at least + * two lines that start with \c 1 and \c 2. + * \throw KeplerTranslation::RangeError If the Keplerian elements are outside of + * the valid range supported by Kepler::setKeplerElements + * \pre The \p filename must exist + */ + void readTLEFile(const std::string& filename); + }; -// #endif // __OPENSPACE_MODULE_BASE___RenderableSatellites___H__ +#endif // __OPENSPACE_MODULE_BASE___RenderableSatellites___H__ -// } +}