/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { const std::string _loggerCat = "ABufferRenderer"; const std::string BoundsFragmentShaderPath = "${SHADERS}/abuffer/boundsabuffer.frag"; const std::string RenderFragmentShaderPath = "${SHADERS}/abuffer/renderabuffer.frag"; const std::string PostRenderFragmentShaderPath = "${SHADERS}/abuffer/postrenderabuffer.frag"; const int MaxRaycasters = 32; const int MaxLayers = 32; const int MaxAverageLayers = 8; } namespace openspace { ABufferRenderer::ABufferRenderer() : _camera(nullptr) , _scene(nullptr) , _resolution(glm::ivec2(0)) , _dirtyResolution(true) , _dirtyRaycastData(true) , _dirtyRendererData(true) , _dirtyResolveDictionary(true) , _resolveProgram(nullptr) { } ABufferRenderer::~ABufferRenderer() {} void ABufferRenderer::initialize() { LINFO("Initializing ABufferRenderer"); const GLfloat size = 1.0f; const GLfloat vertex_data[] = { // x y s t -size, -size, 0.0f, 1.0f, size, size, 0.0f, 1.0f, -size, size, 0.0f, 1.0f, -size, -size, 0.0f, 1.0f, size, -size, 0.0f, 1.0f, size, size, 0.0f, 1.0f, }; glGenVertexArrays(1, &_screenQuad); glBindVertexArray(_screenQuad); glGenBuffers(1, &_vertexPositionBuffer); glBindBuffer(GL_ARRAY_BUFFER, _vertexPositionBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_data), vertex_data, GL_STATIC_DRAW); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(GLfloat)*4, reinterpret_cast(0)); glEnableVertexAttribArray(0); glGenTextures(1, &_anchorPointerTexture); glGenBuffers(1, &_anchorPointerTextureInitializer); glGenBuffers(1, &_atomicCounterBuffer); glBindBuffer(GL_ATOMIC_COUNTER_BUFFER, _atomicCounterBuffer); glBufferData(GL_ATOMIC_COUNTER_BUFFER, sizeof(GLuint), NULL, GL_DYNAMIC_COPY); glGenBuffers(1, &_fragmentBuffer); glGenTextures(1, &_fragmentTexture); glGenTextures(1, &_mainColorTexture); glGenTextures(1, &_mainDepthTexture); glGenFramebuffers(1, &_mainFramebuffer); GLint defaultFbo; glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFbo); updateResolution(); updateRendererData(); updateRaycastData(); updateResolveDictionary(); glBindFramebuffer(GL_FRAMEBUFFER, _mainFramebuffer); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D_MULTISAMPLE, _mainColorTexture, 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D_MULTISAMPLE, _mainDepthTexture, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { LERROR("Main framebuffer is not complete"); } glBindFramebuffer(GL_FRAMEBUFFER, defaultFbo); try { ghoul::Dictionary dict; dict.setValue("resolveData", _resolveDictionary); dict.setValue("rendererData", _rendererData); _resolveProgram = ghoul::opengl::ProgramObject::Build("ABuffer Resolve", "${SHADERS}/abuffer/resolveabuffer.vert", "${SHADERS}/abuffer/resolveabuffer.frag", dict); } catch (ghoul::RuntimeError e) { LERROR(e.message); } OsEng.renderEngine().raycasterManager().addListener(*this); } void ABufferRenderer::deinitialize() { LINFO("Deinitializing ABufferRenderer"); glDeleteBuffers(1, &_fragmentBuffer); glDeleteTextures(1, &_fragmentTexture); glDeleteTextures(1, &_anchorPointerTexture); glDeleteBuffers(1, &_anchorPointerTextureInitializer); glDeleteBuffers(1, &_atomicCounterBuffer); glDeleteBuffers(1, &_vertexPositionBuffer); glDeleteVertexArrays(1, &_screenQuad); OsEng.renderEngine().raycasterManager().removeListener(*this); } void ABufferRenderer::raycastersChanged(VolumeRaycaster& raycaster, bool attached) { (void) raycaster; (void) attached; _dirtyRaycastData = true; } void ABufferRenderer::update() { // Make sure that the fragment buffer has the correct resoliution // according to the output render buffer size if (_dirtyResolution) { updateResolution(); } // Make sure that the renderengine gets the correct render data // to feed into all render programs. // This will trigger a recompilation of all the shader programs // involved in rendering geometries. if (_dirtyRendererData) { updateRendererData(); } // Make sure that all raycaster data is up to date. if (_dirtyRaycastData) { updateRaycastData(); } // Make sure that the resolve dictionary is up to date. // The resolve dictionary contains information for all // ray casters, including shader include paths. if (_dirtyResolveDictionary) { updateResolveDictionary(); ghoul::Dictionary dict; dict.setValue("resolveData", _resolveDictionary); dict.setValue("rendererData", _rendererData); _resolveProgram->setDictionary(dict); } // If the resolve dictionary changed (or a file changed on disk) // then rebuild the resolve program. if (_resolveProgram->isDirty()) { try { _resolveProgram->rebuildFromFile(); } catch (ghoul::RuntimeError& error) { LERROR(error.message); } } for (auto &program : _boundsPrograms) { if (program.second->isDirty()) { try { program.second->rebuildFromFile(); } catch (ghoul::RuntimeError e) { LERROR(e.message); } } } } void ABufferRenderer::render(float blackoutFactor, bool doPerformanceMeasurements) { if (_scene == nullptr) return; if (_camera == nullptr) return; _mainColorTextureUnit = std::make_unique(); _mainColorTextureUnit->activate(); glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainColorTexture); _mainDepthTextureUnit = std::make_unique(); _mainDepthTextureUnit->activate(); glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainDepthTexture); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); GLint defaultFbo; glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFbo); glBindFramebuffer(GL_FRAMEBUFFER, _mainFramebuffer); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Reset clear(); glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); // Step 1: Render geometries to the fragment buffer // Bind head-pointer image for read-write glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, _atomicCounterBuffer); glBindImageTexture(0, _anchorPointerTexture, 0, GL_FALSE, 0, GL_READ_WRITE, GL_R32UI); glBindImageTexture(1, _fragmentTexture, 0, GL_FALSE, 0, GL_READ_WRITE, GL_RGBA32UI); // Render the scene to the fragment buffer. Collect renderer tasks (active raycasters) RenderData data{ *_camera, psc(), doPerformanceMeasurements }; RendererTasks tasks; _scene->render(data, tasks); _rendererTasks = std::make_unique(tasks); _renderData = std::make_unique(data); _blackoutFactor = blackoutFactor; glBindFramebuffer(GL_FRAMEBUFFER, defaultFbo); // Step 2: Perform raycasting tasks requested by the scene for (const RaycasterTask& raycasterTask : tasks.raycasterTasks) { VolumeRaycaster* raycaster = raycasterTask.raycaster; ghoul::opengl::ProgramObject* program = _boundsPrograms[raycaster].get(); if (program) { program->activate(); program->setUniform("_exit_", false); raycaster->renderEntryPoints(raycasterTask.renderData, *program); program->setUniform("_exit_", true); raycaster->renderExitPoints(raycasterTask.renderData, *program); program->deactivate(); } else { LWARNING("Raycaster is not attached when trying to perform raycaster task"); } } // Step 3: Resolve the buffer _resolveProgram->activate(); // TEMPORARY GAMMA CORRECTION. float gamma = 1.0; glm::vec3 cameraPos = data.camera.position().vec3(); float maxComponent = std::max(std::max(std::abs(cameraPos.x), std::abs(cameraPos.y)), std::abs(cameraPos.z)); float logDistance = std::log(glm::length(cameraPos / maxComponent) * maxComponent) / std::log(10); float minLogDist = 15; float maxLogDist = 20; float t = (logDistance - minLogDist) / (maxLogDist - minLogDist); t = glm::clamp(t, 0.0f, 1.0f); gamma = 1.0 * (1 - t) + 2.2 * t; _resolveProgram->setUniform("gamma", gamma); // END TEMPORARY GAMMA CORRECTION. preRaycast(*_resolveProgram); glBindVertexArray(_screenQuad); glDrawArrays(GL_TRIANGLES, 0, 6); postRaycast(*_resolveProgram); _resolveProgram->deactivate(); _scene->postRender(data); _mainColorTextureUnit = nullptr; _mainDepthTextureUnit = nullptr; } void ABufferRenderer::preRaycast(ghoul::opengl::ProgramObject& program) { program.setUniform("mainColorTexture", _mainColorTextureUnit->unitNumber()); program.setUniform("mainDepthTexture", _mainDepthTextureUnit->unitNumber()); for (const auto& raycastData : _raycastData) { raycastData.first->preRaycast(raycastData.second, program); glm::vec3 localCameraPosition; bool cameraIsInside = raycastData.first->cameraIsInside(*_renderData, localCameraPosition); int uniformIndex = raycastData.second.id + 1; // uniforms are indexed from 1 (not from 0) program.setUniform("insideRaycaster" + std::to_string(uniformIndex), cameraIsInside); if (cameraIsInside) { program.setUniform("cameraPosInRaycaster" + std::to_string(uniformIndex), localCameraPosition); } } // 3b: Set "global" uniforms, and start the resolve pass. program.setUniform("blackoutFactor", _blackoutFactor); program.setUniform("nAaSamples", _nAaSamples); } void ABufferRenderer::postRaycast(ghoul::opengl::ProgramObject& program) { for (const auto& raycastData : _raycastData) { raycastData.first->postRaycast(raycastData.second, program); } } void ABufferRenderer::setScene(Scene* scene) { _scene = scene; } void ABufferRenderer::setCamera(Camera* camera) { _camera = camera; } void ABufferRenderer::setResolution(glm::ivec2 res) { if (res != _resolution) { _resolution = res; _dirtyResolution = true; } } void ABufferRenderer::setNAaSamples(int nAaSamples) { _nAaSamples = nAaSamples; if (_nAaSamples == 0) { _nAaSamples = 1; } if (_nAaSamples > 8) { LERROR("Framebuffer renderer does not support more than 8 MSAA samples."); _nAaSamples = 8; } _dirtyResolution = true; } void ABufferRenderer::clear() { glBindBuffer(GL_PIXEL_UNPACK_BUFFER, _anchorPointerTextureInitializer); glBindTexture(GL_TEXTURE_2D, _anchorPointerTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_R32UI, _resolution.x, _resolution.y, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, NULL); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); static const GLuint zero = 1; glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, _atomicCounterBuffer); glBufferSubData(GL_ATOMIC_COUNTER_BUFFER, 0, sizeof(zero), &zero); glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, 0); } void ABufferRenderer::updateResolution() { int totalPixels = _resolution.x * _resolution.y; glBindTexture(GL_TEXTURE_2D, _anchorPointerTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_R32UI, _resolution.x, _resolution.y, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, _anchorPointerTextureInitializer); glBufferData(GL_PIXEL_UNPACK_BUFFER, totalPixels * sizeof(GLuint), NULL, GL_STATIC_DRAW); GLuint* data = (GLuint*)glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY); memset(data, 0x00, totalPixels * sizeof(GLuint)); glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); glBindBuffer(GL_TEXTURE_BUFFER, _fragmentBuffer); glBufferData(GL_TEXTURE_BUFFER, MaxAverageLayers*totalPixels*sizeof(GLuint) * 4, NULL, GL_DYNAMIC_COPY); glBindTexture(GL_TEXTURE_BUFFER, _fragmentTexture); glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA32UI, _fragmentBuffer); glBindTexture(GL_TEXTURE_BUFFER, 0); glBindImageTexture(1, _fragmentTexture, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RGBA32UI); glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainColorTexture); glTexImage2DMultisample( GL_TEXTURE_2D_MULTISAMPLE, _nAaSamples, GL_RGBA, GLsizei(_resolution.x), GLsizei(_resolution.y), true); glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainDepthTexture); glTexImage2DMultisample( GL_TEXTURE_2D_MULTISAMPLE, _nAaSamples, GL_DEPTH_COMPONENT32F, GLsizei(_resolution.x), GLsizei(_resolution.y), true); _dirtyResolution = false; } void ABufferRenderer::updateResolveDictionary() { ghoul::Dictionary dict; ghoul::Dictionary raycastersDict; for (const auto &raycastPair : _raycastData) { ghoul::Dictionary innerDict; int id = raycastPair.second.id; std::string namespaceName = raycastPair.second.namespaceName; std::string raycastPath = raycastPair.first->getRaycastPath(); innerDict.setValue("id", id); innerDict.setValue("namespace", namespaceName); innerDict.setValue("bitmask", 1 << id); innerDict.setValue("raycastPath", raycastPath); raycastersDict.setValue(std::to_string(id), innerDict); } dict.setValue("raycasters", raycastersDict); ghoul::Dictionary helperPathsDict; for (int i = 0; i < _helperPaths.size(); i++) { helperPathsDict.setValue(std::to_string(i), _helperPaths[i]); } dict.setValue("helperPaths", helperPathsDict); dict.setValue("raycastingEnabled", _raycastData.size() > 0); dict.setValue("storeSorted", true); dict.setValue("nRaycasters", static_cast(_raycastData.size())); _resolveDictionary = dict; OsEng.renderEngine().setResolveData(dict); _dirtyResolveDictionary = false; } void ABufferRenderer::updateRaycastData() { _raycastData.clear(); _boundsPrograms.clear(); _helperPaths.clear(); const std::vector& raycasters = OsEng.renderEngine().raycasterManager().raycasters(); std::map namespaceIndices; int nextId = 0; // raycaster ids are positive integers starting at 0. (for raycasters, fragment type is id+1) int nextNamespaceIndex = 0; for (auto &raycaster : raycasters) { if (nextId > MaxRaycasters) { int nIgnored = MaxRaycasters - raycasters.size(); LWARNING("ABufferRenderer does not support more than 32 raycasters. Ignoring " << nIgnored << " raycasters"); break; } RaycastData data; data.id = nextId++; std::string helperPath = raycaster->getHelperPath(); // Each new helper path generates a new namespace, // to avoid glsl name collisions between raycaster implementaitons. // Assign a new namespace or find an already created index. if (helperPath == "") { data.namespaceName = "NAMESPACE_" + std::to_string(nextNamespaceIndex++); } else { auto iter = namespaceIndices.find(helperPath); if (iter == namespaceIndices.end()) { int namespaceIndex = nextNamespaceIndex++; data.namespaceName = std::to_string(namespaceIndex); namespaceIndices[helperPath] = namespaceIndex; _helperPaths.push_back(helperPath); } else { data.namespaceName = "NAMESPACE_" + std::to_string(iter->second); } } _raycastData[raycaster] = data; std::string vsPath = raycaster->getBoundsVsPath(); std::string fsPath = raycaster->getBoundsFsPath(); ghoul::Dictionary dict; // set path to the current renderer's main fragment shader dict.setValue("rendererData", _rendererData); // parameterize the main fragment shader program with specific contents. // fsPath should point to a shader file defining a Fragment getFragment() function // instead of a void main() setting glFragColor, glFragDepth, etc. dict.setValue("fragmentPath", fsPath); dict.setValue("fragmentType", data.id + 1); try { _boundsPrograms[raycaster] = ghoul::opengl::ProgramObject::Build("Volume " + std::to_string(data.id) + " bounds", vsPath, BoundsFragmentShaderPath, dict); } catch (ghoul::RuntimeError& error) { LERROR(error.message); } } _dirtyRaycastData = false; _dirtyResolveDictionary = true; } void ABufferRenderer::updateRendererData() { ghoul::Dictionary dict; dict.setValue("windowWidth", _resolution.x); dict.setValue("windowHeight", _resolution.y); dict.setValue("fragmentRendererPath", std::string(RenderFragmentShaderPath)); dict.setValue("postFragmentRendererPath", std::string(PostRenderFragmentShaderPath)); dict.setValue("maxLayers", MaxLayers); dict.setValue("maxTotalFragments", MaxLayers * _resolution.x * _resolution.y); _rendererData = dict; OsEng.renderEngine().setRendererData(dict); _dirtyRendererData = false; } }