/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2018 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { constexpr const char* _loggerCat = "RenderableTimeVaryingVolume"; } // namespace namespace { const char* KeyDimensions = "Dimensions"; const char* KeyStepSize = "StepSize"; const char* KeyTransferFunction = "TransferFunction"; const char* KeySourceDirectory = "SourceDirectory"; const char* KeyLowerDomainBound = "LowerDomainBound"; const char* KeyUpperDomainBound = "UpperDomainBound"; const char* KeyClipPlanes = "ClipPlanes"; const char* KeySecondsBefore = "SecondsBefore"; const char* KeySecondsAfter = "SecondsAfter"; const char* KeyGridType = "GridType"; const char* KeyMinValue = "MinValue"; const char* KeyMaxValue = "MaxValue"; const char* KeyTime = "Time"; const char* KeyUnit = "VisUnit"; const float SecondsInOneDay = 60 * 60 * 24; static const openspace::properties::Property::PropertyInfo StepSizeInfo = { "stepSize", "Step Size", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo GridTypeInfo = { "gridType", "Grid Type", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo SecondsBeforeInfo = { "secondsBefore", "Seconds before", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo SecondsAfterInfo = { "secondsAfter", "Seconds after", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo SourceDirectoryInfo = { "sourceDirectory", "Source Directory", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo TransferFunctionInfo = { "transferFunctionPath", "Transfer Function Path", "" }; static const openspace::properties::Property::PropertyInfo TriggerTimeJumpInfo = { "triggerTimeJump", "Jump", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo JumpToTimestepInfo = { "jumpToTimestep", "Jump to timestep", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo CurrentTimeStepInfo = { "currentTimestep", "Current timestep", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo OpacityInfo = { "opacity", "Opacity", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo rNormalizationInfo = { "rNormalization", "Radius normalization", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo rUpperBoundInfo = { "rUpperBound", "Radius upper bound", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo lowerValueBoundInfo = { "lowerValueBound", "Lower value bound", "" // @TODO Missing documentation }; static const openspace::properties::Property::PropertyInfo upperValueBoundInfo = { "upperValueBound", "Upper value bound", "" // @TODO Missing documentation }; } // namespace namespace openspace { namespace volume { RenderableTimeVaryingVolume::RenderableTimeVaryingVolume( const ghoul::Dictionary& dictionary) : Renderable(dictionary) , _gridType(GridTypeInfo, properties::OptionProperty::DisplayType::Dropdown) , _clipPlanes(nullptr) , _stepSize(StepSizeInfo, 0.02f, 0.001f, 1.f) , _opacity(OpacityInfo, 10.f, 0.f, 500.f) , _rNormalization(rNormalizationInfo, 0.f, 0.f, 2.f) , _rUpperBound(rUpperBoundInfo, 1.f, 0.f, 2.f) , _secondsBefore(SecondsBeforeInfo, 0.f, 0.01f, SecondsInOneDay) , _secondsAfter(SecondsAfterInfo, 0.f, 0.01f, SecondsInOneDay) , _sourceDirectory(SourceDirectoryInfo) , _transferFunctionPath(TransferFunctionInfo) , _triggerTimeJump(TriggerTimeJumpInfo) , _jumpToTimestep(JumpToTimestepInfo, 0, 0, 256) , _currentTimestep(CurrentTimeStepInfo, 0, 0, 256) , _raycaster(nullptr) , _transferFunctionHandler(nullptr) { documentation::testSpecificationAndThrow( Documentation(), dictionary, "RenderableTimeVaryingVolume" ); _sourceDirectory = absPath(dictionary.value(KeySourceDirectory)); _transferFunctionPath = absPath(dictionary.value(KeyTransferFunction)); _transferFunctionHandler = std::make_shared(_transferFunctionPath); _gridType.addOptions({ { static_cast(volume::VolumeGridType::Cartesian), "Cartesian grid" }, { static_cast(volume::VolumeGridType::Spherical), "Spherical grid" }, }); _gridType.setValue(static_cast(volume::VolumeGridType::Cartesian)); if (dictionary.hasValue(KeyStepSize)) { _stepSize = dictionary.value(KeyStepSize); } if (dictionary.hasValue(KeySecondsBefore)) { _secondsBefore = dictionary.value(KeySecondsBefore); } _secondsAfter = dictionary.value(KeySecondsAfter); ghoul::Dictionary clipPlanesDictionary; dictionary.getValue(KeyClipPlanes, clipPlanesDictionary); _clipPlanes = std::make_shared(clipPlanesDictionary); _clipPlanes->setIdentifier("clipPlanes"); _clipPlanes->setGuiName("Clip Planes"); if (dictionary.hasValue(KeyGridType)) { VolumeGridType gridType = volume::parseGridType( dictionary.value(KeyGridType) ); _gridType = (gridType == VolumeGridType::Spherical) ? 1 : 0; } } RenderableTimeVaryingVolume::~RenderableTimeVaryingVolume() {} void RenderableTimeVaryingVolume::initializeGL() { using RawPath = ghoul::filesystem::Directory::RawPath; ghoul::filesystem::Directory sequenceDir(_sourceDirectory, RawPath::Yes); if (!FileSys.directoryExists(sequenceDir)) { LERROR(fmt::format("Could not load sequence directory '{}'", sequenceDir.path())); return; } using Recursive = ghoul::filesystem::Directory::Recursive; using Sort = ghoul::filesystem::Directory::Sort; std::vector sequencePaths = sequenceDir.read(Recursive::Yes, Sort::No); for (auto path : sequencePaths) { ghoul::filesystem::File currentFile(path); std::string extension = currentFile.fileExtension(); if (extension == "dictionary") { loadTimestepMetadata(path); } if (extension == "tf") { _transferFunctionHandler->setFilepath(path); } } // TODO: defer loading of data to later (separate thread or at least not when loading) for (auto& p : _volumeTimesteps) { Timestep& t = p.second; std::string path = FileSys.pathByAppendingComponent( _sourceDirectory, t.baseName ) + ".rawvolume"; RawVolumeReader reader(path, t.dimensions); t.rawVolume = reader.read(); float min = t.minValue; float diff = t.maxValue - t.minValue; float *data = t.rawVolume->data(); for (size_t i = 0; i < t.rawVolume->nCells(); ++i) { data[i] = glm::clamp((data[i] - min) / diff, 0.0f, 1.0f); } t.histogram = std::make_shared(0.0, 1.0, 100); for (int i = 0; i < t.rawVolume->nCells(); ++i) { t.histogram->add(data[i]); } // TODO: handle normalization properly for different timesteps + transfer function t.texture = std::make_shared( t.dimensions, ghoul::opengl::Texture::Format::Red, GL_RED, GL_FLOAT, ghoul::opengl::Texture::FilterMode::Linear, ghoul::opengl::Texture::WrappingMode::Clamp ); t.texture->setPixelData( reinterpret_cast(data), ghoul::opengl::Texture::TakeOwnership::No ); t.texture->uploadTexture(); } _transferFunctionHandler->initialize(); _clipPlanes->initialize(); _raycaster = std::make_unique(nullptr, _transferFunctionHandler, _clipPlanes); _raycaster->initialize(); OsEng.renderEngine().raycasterManager().attachRaycaster(*_raycaster.get()); auto onChange = [&](bool enabled) { if (enabled) { OsEng.renderEngine().raycasterManager().attachRaycaster(*_raycaster.get()); } else { OsEng.renderEngine().raycasterManager().detachRaycaster(*_raycaster.get()); } }; onEnabledChange(onChange); _triggerTimeJump.onChange([this] () { jumpToTimestep(_jumpToTimestep); }); _jumpToTimestep.onChange([this] () { jumpToTimestep(_jumpToTimestep); }); const int lastTimestep = (_volumeTimesteps.size() > 0) ? static_cast(_volumeTimesteps.size() - 1) : 0; _currentTimestep.setMaxValue(lastTimestep); _jumpToTimestep.setMaxValue(lastTimestep); addProperty(_stepSize); addProperty(_transferFunctionPath); addProperty(_sourceDirectory); addPropertySubOwner(_clipPlanes.get()); addPropertySubOwner(_transferFunctionHandler.get()); addProperty(_triggerTimeJump); addProperty(_jumpToTimestep); addProperty(_currentTimestep); addProperty(_opacity); addProperty(_rNormalization); addProperty(_rUpperBound); _raycaster->setGridType( (_gridType.value() == 1) ? VolumeGridType::Spherical : VolumeGridType::Cartesian ); _gridType.onChange([this] { _raycaster->setGridType( (_gridType.value() == 1) ? VolumeGridType::Spherical : VolumeGridType::Cartesian ); }); _transferFunctionPath.onChange([this] { _transferFunctionHandler = std::make_shared(_transferFunctionPath); _raycaster->setTransferFunctionHandler(_transferFunctionHandler); }); } void RenderableTimeVaryingVolume::loadTimestepMetadata(const std::string& path) { ghoul::Dictionary dictionary = ghoul::lua::loadDictionaryFromFile(path); documentation::testSpecificationAndThrow( TimestepDocumentation(), dictionary, "TimeVaryingVolumeTimestep" ); Timestep t; t.baseName = ghoul::filesystem::File(path).baseName(); t.dimensions = dictionary.value(KeyDimensions); t.lowerDomainBound = dictionary.value(KeyLowerDomainBound); t.upperDomainBound = dictionary.value(KeyUpperDomainBound); t.minValue = dictionary.value(KeyMinValue); t.maxValue = dictionary.value(KeyMaxValue); t.unit = dictionary.value(KeyUnit); std::string timeString = dictionary.value(KeyTime); t.time = Time::convertTime(timeString); t.inRam = false; t.onGpu = false; _volumeTimesteps[t.time] = std::move(t); } RenderableTimeVaryingVolume::Timestep* RenderableTimeVaryingVolume::currentTimestep() { if (_volumeTimesteps.size() == 0) { return nullptr; } double currentTime = OsEng.timeManager().time().j2000Seconds(); // Get the first item with time > currentTime auto currentTimestepIt = _volumeTimesteps.upper_bound(currentTime); if (currentTimestepIt == _volumeTimesteps.end()) { // No such timestep was found: show last timestep if it is within the time margin. Timestep* lastTimestep = &(_volumeTimesteps.rbegin()->second); double threshold = lastTimestep->time + static_cast(_secondsAfter); return currentTime < threshold ? lastTimestep : nullptr; } if (currentTimestepIt == _volumeTimesteps.begin()) { // No such timestep was found: show first timestep if it is within the time margin Timestep* firstTimestep = &(_volumeTimesteps.begin()->second); double threshold = firstTimestep->time - static_cast(_secondsBefore); return currentTime >= threshold ? firstTimestep : nullptr; } // Get the last item with time <= currentTime currentTimestepIt--; return &(currentTimestepIt->second); } int RenderableTimeVaryingVolume::timestepIndex( const RenderableTimeVaryingVolume::Timestep* t) const { if (!t) { return -1; } int index = 0; for (auto& it : _volumeTimesteps) { if (&(it.second) == t) { return index; } ++index; } return -1; } RenderableTimeVaryingVolume::Timestep* RenderableTimeVaryingVolume::timestepFromIndex( int target) { if (target < 0) { target = 0; } int index = 0; for (auto& it : _volumeTimesteps) { if (index == target) { return &(it.second); } ++index; } return nullptr; } void RenderableTimeVaryingVolume::jumpToTimestep(int target) { Timestep* t = timestepFromIndex(target); if (!t) { return; } OsEng.timeManager().setTimeNextFrame(t->time); } void RenderableTimeVaryingVolume::update(const UpdateData&) { if (_raycaster) { Timestep* t = currentTimestep(); _currentTimestep = timestepIndex(t); if (t && t->texture) { if (_raycaster->gridType() == volume::VolumeGridType::Cartesian) { glm::dvec3 scale = t->upperDomainBound - t->lowerDomainBound; glm::dvec3 translation = (t->lowerDomainBound + t->upperDomainBound) * 0.5f; glm::dmat4 modelTransform = glm::translate(glm::dmat4(1.0), translation); glm::dmat4 scaleMatrix = glm::scale(glm::dmat4(1.0), scale); modelTransform = modelTransform * scaleMatrix; _raycaster->setModelTransform(glm::mat4(modelTransform)); } else { _raycaster->setModelTransform( glm::scale( glm::dmat4(1.0), glm::dvec3(t->upperDomainBound[0]) ) ); } _raycaster->setVolumeTexture(t->texture); _transferFunctionHandler->setUnit(t->unit); _transferFunctionHandler->setMinAndMaxValue(t->minValue, t->maxValue); _transferFunctionHandler->setHistogramProperty(t->histogram); } else { _raycaster->setVolumeTexture(nullptr); } _raycaster->setStepSize(_stepSize); _raycaster->setOpacity(_opacity); _raycaster->setRNormalization(_rNormalization); _raycaster->setRUpperBound(_rUpperBound); } } void RenderableTimeVaryingVolume::render(const RenderData& data, RendererTasks& tasks) { if (_raycaster && _raycaster->volumeTexture()) { tasks.raycasterTasks.push_back({ _raycaster.get(), data }); } } bool RenderableTimeVaryingVolume::isReady() const { return true; } void RenderableTimeVaryingVolume::deinitializeGL() { if (_raycaster) { OsEng.renderEngine().raycasterManager().detachRaycaster(*_raycaster.get()); _raycaster = nullptr; } } documentation::Documentation RenderableTimeVaryingVolume::Documentation() { using namespace documentation; return { "RenderableTimevaryingVolume", "volume_renderable_timevaryingvolume", { { KeySourceDirectory, new StringVerifier, Optional::No, "Specifies the path to load timesteps from" }, { KeyTransferFunction, new StringVerifier, Optional::No, "Specifies the transfer function file path" }, { KeyGridType, new StringInListVerifier({"Cartesian", "Spherical"}), Optional::Yes, "Specifies the grid type" }, { KeySecondsBefore, new DoubleVerifier, Optional::Yes, "Specifies the number of seconds to show the the first timestep before " "its actual time. The default value is 0." }, { KeySecondsAfter, new DoubleVerifier, Optional::No, "Specifies the number of seconds to show the the last timestep after its " "actual time" } } }; } documentation::Documentation RenderableTimeVaryingVolume::TimestepDocumentation() { using namespace documentation; return { "TimevaryingVolumeTimestep", "volume_timevaryingvolumetimestep", { { KeyLowerDomainBound, new Vector3Verifier, Optional::No, "Specifies the lower domain bounds in the model coordinate system", }, { KeyUpperDomainBound, new Vector3Verifier, Optional::No, "Specifies the upper domain bounds in the model coordinate system", }, { KeyDimensions, new Vector3Verifier, Optional::No, "Specifies the number of grid cells in each dimension", }, { KeyTime, new StringVerifier, Optional::No, "Specifies the time on the format YYYY-MM-DDTHH:MM:SS.000Z", }, { KeyMinValue, new DoubleVerifier, Optional::No, "Specifies the minimum value stored in the volume" }, { KeyMaxValue, new DoubleVerifier, Optional::No, "Specifies the maximum value stored in the volume" } } }; } } // namespace volume } // namespace openspace