/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ // open space includes #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include namespace { const std::string _loggerCat = "RenderablePlanet"; const std::string keyFrame = "Frame"; const std::string keyGeometry = "Geometry"; const std::string keyRadius = "Radius"; const std::string keyShading = "PerformShading"; const std::string keyShadowGroup = "Shadow_Group"; const std::string keyShadowSource = "Source"; const std::string keyShadowCaster = "Caster"; const std::string keyPlanetRadius = "PlanetRadius"; const std::string keyBody = "Body"; } namespace openspace { RenderablePlanet::RenderablePlanet(const ghoul::Dictionary& dictionary) : Renderable(dictionary) , _colorTexturePath("colorTexture", "Color Texture") , _nightTexturePath("nightTexture", "Night Texture") , _heightMapTexturePath("heightMap", "Heightmap Texture") , _heightExaggeration("heightExaggeration", "Height Exaggeration", 1.f, 0.f, 10.f) , _programObject(nullptr) , _texture(nullptr) , _nightTexture(nullptr) , _geometry(nullptr) , _performShading("performShading", "Perform Shading", true) , _rotation("rotation", "Rotation", 0, 0, 360) , _alpha(1.f) , _planetRadius(0.f) , _hasNightTexture(false) , _hasHeightTexture(false) , _shadowEnabled(false) { std::string name; bool success = dictionary.getValue(SceneGraphNode::KeyName, name); ghoul_assert(success, "RenderablePlanet need the '" << SceneGraphNode::KeyName<<"' be specified"); ghoul::Dictionary geometryDictionary; success = dictionary.getValue(keyGeometry, geometryDictionary); if (success) { geometryDictionary.setValue(SceneGraphNode::KeyName, name); _geometry = planetgeometry::PlanetGeometry::createFromDictionary(geometryDictionary); glm::vec2 planetRadiusVec; success = geometryDictionary.getValue(keyRadius, planetRadiusVec); if (success) _planetRadius = planetRadiusVec[0] * glm::pow(10, planetRadiusVec[1]); else LWARNING("No Radius value expecified for " << name << " planet."); } dictionary.getValue(keyFrame, _frame); dictionary.getValue(keyBody, _target); // TODO: textures need to be replaced by a good system similar to the geometry as soon // as the requirements are fixed (ab) std::string texturePath = ""; success = dictionary.getValue("Textures.Color", texturePath); if (success) _colorTexturePath = absPath(texturePath); std::string nightTexturePath = ""; dictionary.getValue("Textures.Night", nightTexturePath); if (nightTexturePath != ""){ _hasNightTexture = true; _nightTexturePath = absPath(nightTexturePath); } std::string heightMapTexturePath = ""; dictionary.getValue("Textures.Height", heightMapTexturePath); if (heightMapTexturePath != "") { _hasHeightTexture = true; _heightMapTexturePath = absPath(heightMapTexturePath); } addPropertySubOwner(_geometry); addProperty(_colorTexturePath); _colorTexturePath.onChange(std::bind(&RenderablePlanet::loadTexture, this)); addProperty(_nightTexturePath); _nightTexturePath.onChange(std::bind(&RenderablePlanet::loadTexture, this)); addProperty(_heightMapTexturePath); _heightMapTexturePath.onChange(std::bind(&RenderablePlanet::loadTexture, this)); addProperty(_heightExaggeration); if (dictionary.hasKeyAndValue(keyShading)) { bool shading; dictionary.getValue(keyShading, shading); _performShading = shading; } addProperty(_performShading); // Mainly for debugging purposes @AA addProperty(_rotation); // Shadow data: ghoul::Dictionary shadowDictionary; success = dictionary.getValue(keyShadowGroup, shadowDictionary); bool disableShadows = false; if (success) { std::vector< std::pair > sourceArray; unsigned int sourceCounter = 1; while (success) { std::string sourceName; std::stringstream ss; ss << keyShadowSource << sourceCounter << ".Name"; success = shadowDictionary.getValue(ss.str(), sourceName); if (success) { glm::vec2 sourceRadius; ss.str(std::string()); ss << keyShadowSource << sourceCounter << ".Radius"; success = shadowDictionary.getValue(ss.str(), sourceRadius); if (success) { sourceArray.push_back(std::pair< std::string, float>( sourceName, sourceRadius[0] * pow(10.f, sourceRadius[1]))); } else { LWARNING("No Radius value expecified for Shadow Source Name " << sourceName << " from " << name << " planet.\nDisabling shadows for this planet."); disableShadows = true; break; } } sourceCounter++; } if (!disableShadows && !sourceArray.empty()) { success = true; std::vector< std::pair > casterArray; unsigned int casterCounter = 1; while (success) { std::string casterName; std::stringstream ss; ss << keyShadowCaster << casterCounter << ".Name"; success = shadowDictionary.getValue(ss.str(), casterName); if (success) { glm::vec2 casterRadius; ss.str(std::string()); ss << keyShadowCaster << casterCounter << ".Radius"; success = shadowDictionary.getValue(ss.str(), casterRadius); if (success) { casterArray.push_back(std::pair< std::string, float>( casterName, casterRadius[0] * pow(10.f, casterRadius[1]))); } else { LWARNING("No Radius value expecified for Shadow Caster Name " << casterName << " from " << name << " planet.\nDisabling shadows for this planet."); disableShadows = true; break; } } casterCounter++; } if (!disableShadows && (!sourceArray.empty() && !casterArray.empty())) { for (const auto & source : sourceArray) for (const auto & caster : casterArray) { ShadowConf sc; sc.source = source; sc.caster = caster; _shadowConfArray.push_back(sc); } _shadowEnabled = true; } } } } RenderablePlanet::~RenderablePlanet() { } bool RenderablePlanet::initialize() { RenderEngine& renderEngine = OsEng.renderEngine(); GLenum err; while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); std::stringstream ss; ss << "Checking System State. OpenGL error: " << errString << std::endl; LERROR(ss.str()); } if (_programObject == nullptr && _shadowEnabled && _hasNightTexture) { // shadow program _programObject = renderEngine.buildRenderProgram( "shadowNightProgram", "${MODULE_BASE}/shaders/shadow_nighttexture_vs.glsl", "${MODULE_BASE}/shaders/shadow_nighttexture_fs.glsl"); if (!_programObject) return false; } else if (_programObject == nullptr && _shadowEnabled) { // shadow program _programObject = renderEngine.buildRenderProgram( "shadowProgram", "${MODULE_BASE}/shaders/shadow_vs.glsl", "${MODULE_BASE}/shaders/shadow_fs.glsl"); if (!_programObject) return false; } else if (_programObject == nullptr && _hasNightTexture) { // Night texture program _programObject = renderEngine.buildRenderProgram( "nightTextureProgram", "${MODULE_BASE}/shaders/nighttexture_vs.glsl", "${MODULE_BASE}/shaders/nighttexture_fs.glsl"); if (!_programObject) return false; } else if (_programObject == nullptr) { // pscstandard _programObject = renderEngine.buildRenderProgram( "pscstandard", "${MODULE_BASE}/shaders/renderableplanet_vs.glsl", "${MODULE_BASE}/shaders/renderableplanet_fs.glsl"); if (!_programObject) return false; } using IgnoreError = ghoul::opengl::ProgramObject::IgnoreError; _programObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes); _programObject->setIgnoreUniformLocationError(IgnoreError::Yes); while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); std::stringstream ss; ss << "Error after load shading programs. OpenGL error: " << errString << std::endl; LERROR(ss.str()); } loadTexture(); while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); std::stringstream ss; ss << "Error loading textures. OpenGL error: " << errString << std::endl; LERROR(ss.str()); } _geometry->initialize(this); _programObject->deactivate(); while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Shader Programs Creation. OpenGL error: " << errString); } return isReady(); } bool RenderablePlanet::deinitialize() { if(_geometry) { _geometry->deinitialize(); delete _geometry; } RenderEngine& renderEngine = OsEng.renderEngine(); if (_programObject) { renderEngine.removeRenderProgram(_programObject); _programObject = nullptr; } _geometry = nullptr; _texture = nullptr; _nightTexture = nullptr; return true; } bool RenderablePlanet::isReady() const { bool ready = true; ready &= (_programObject != nullptr); ready &= (_texture != nullptr); ready &= (_geometry != nullptr); return ready; } void RenderablePlanet::render(const RenderData& data) { // activate shader _programObject->activate(); glm::dmat4 modelTransform = glm::translate(glm::dmat4(1.0), data.modelTransform.translation) * // Translation glm::dmat4(data.modelTransform.rotation) * // Spice rotation glm::dmat4(glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale))); // scale the planet to appropriate size since the planet is a unit sphere //glm::mat4 transform = glm::mat4(1); //earth needs to be rotated for that to work. glm::dmat4 rot = glm::rotate(glm::dmat4(1.0), M_PI_2, glm::dvec3(1, 0, 0)); glm::dmat4 roty = glm::rotate(glm::dmat4(1.0), M_PI_2, glm::dvec3(0, -1, 0)); //glm::dmat4 rotProp = glm::rotate(glm::dmat4(1.0), glm::radians(static_cast(_rotation)), glm::dvec3(0, 1, 0)); modelTransform = modelTransform * rot /** roty*/ /** rotProp*/; glm::dmat4 modelViewTransform = data.camera.combinedViewMatrix() * modelTransform; _programObject->setUniform("transparency", _alpha); _programObject->setUniform( "modelViewProjectionTransform", data.camera.projectionMatrix() * glm::mat4(modelViewTransform) ); _programObject->setUniform("ModelTransform", glm::mat4(modelTransform)); // Normal Transformation glm::mat4 translateObjTrans = glm::translate(glm::mat4(1.0), data.position.vec3()); glm::mat4 translateCamTrans = glm::translate(glm::mat4(1.0), -data.camera.position().vec3()); float scaleFactor = data.camera.scaling().x * powf(10.0, data.camera.scaling().y); glm::mat4 scaleCamTrans = glm::scale(glm::mat4(1.0), glm::vec3(scaleFactor)); glm::mat4 ModelViewTrans = data.camera.viewMatrix() * scaleCamTrans * translateCamTrans * translateObjTrans * glm::mat4(modelTransform); setPscUniforms(*_programObject.get(), data.camera, data.position); _programObject->setUniform("_performShading", _performShading); _programObject->setUniform("_hasHeightMap", _hasHeightTexture); _programObject->setUniform("_heightExaggeration", _heightExaggeration); // Bind texture ghoul::opengl::TextureUnit dayUnit; ghoul::opengl::TextureUnit nightUnit; ghoul::opengl::TextureUnit heightUnit; dayUnit.activate(); _texture->bind(); _programObject->setUniform("texture1", dayUnit); // Bind possible night texture if (_hasNightTexture) { nightUnit.activate(); _nightTexture->bind(); _programObject->setUniform("nightTex", nightUnit); } if (_hasHeightTexture) { heightUnit.activate(); _heightMapTexture->bind(); _programObject->setUniform("heightTex", heightUnit); } glEnable(GL_CULL_FACE); glCullFace(GL_BACK); // TODO: Move Calculations to VIEW SPACE (precision problems avoidance...) double lt; // Shadow calculations.. if (!_shadowConfArray.empty()) { std::vector shadowDataArray; shadowDataArray.reserve(_shadowConfArray.size()); for (const auto & shadowConf : _shadowConfArray) { // TO REMEMBER: all distances and lengths in world coordinates are in meters!!! We need to move this to view space... // Getting source and caster: glm::dvec3 sourcePos = SpiceManager::ref().targetPosition(shadowConf.source.first, "SUN", "GALACTIC", {}, _time, lt); sourcePos *= 1000.0; // converting to meters glm::dvec3 casterPos = SpiceManager::ref().targetPosition(shadowConf.caster.first, "SUN", "GALACTIC", {}, _time, lt); casterPos *= 1000.0; // converting to meters psc caster_pos = PowerScaledCoordinate::CreatePowerScaledCoordinate(casterPos.x, casterPos.y, casterPos.z); // First we determine if the caster is shadowing the current planet (all calculations in World Coordinates): glm::vec3 planetCasterVec = (caster_pos - data.position).vec3(); glm::vec3 sourceCasterVec = glm::vec3(casterPos - sourcePos); float sc_length = glm::length(sourceCasterVec); glm::vec3 planetCaster_proj = (glm::dot(planetCasterVec, sourceCasterVec) / (sc_length*sc_length)) * sourceCasterVec; float d_test = glm::length(planetCasterVec - planetCaster_proj); float xp_test = shadowConf.caster.second * sc_length / (shadowConf.source.second + shadowConf.caster.second); float rp_test = shadowConf.caster.second * (glm::length(planetCaster_proj) + xp_test) / xp_test; float casterDistSun = glm::length(casterPos); float planetDistSun = glm::length(data.position.vec3()); ShadowRenderingStruct shadowData; shadowData.isShadowing = false; if (((d_test - rp_test) < _planetRadius) && (casterDistSun < planetDistSun) ) { // The current caster is shadowing the current planet shadowData.isShadowing = true; shadowData.rs = shadowConf.source.second; shadowData.rc = shadowConf.caster.second; shadowData.sourceCasterVec = sourceCasterVec; shadowData.xp = xp_test; shadowData.xu = shadowData.rc * sc_length / (shadowData.rs - shadowData.rc); shadowData.casterPositionVec = glm::vec3(casterPos); } shadowDataArray.push_back(shadowData); } const std::string uniformVarName("shadowDataArray["); unsigned int counter = 0; for (const auto & sd : shadowDataArray) { std::stringstream ss; ss << uniformVarName << counter << "].isShadowing"; _programObject->setUniform(ss.str(), sd.isShadowing); if (sd.isShadowing) { ss.str(std::string()); ss << uniformVarName << counter << "].xp"; _programObject->setUniform(ss.str(), sd.xp); ss.str(std::string()); ss << uniformVarName << counter << "].xu"; _programObject->setUniform(ss.str(), sd.xu); /*ss.str(std::string()); ss << uniformVarName << counter << "].rs"; _programObject->setUniform(ss.str(), sd.rs);*/ ss.str(std::string()); ss << uniformVarName << counter << "].rc"; _programObject->setUniform(ss.str(), sd.rc); ss.str(std::string()); ss << uniformVarName << counter << "].sourceCasterVec"; _programObject->setUniform(ss.str(), sd.sourceCasterVec); ss.str(std::string()); ss << uniformVarName << counter << "].casterPositionVec"; _programObject->setUniform(ss.str(), sd.casterPositionVec); } counter++; } } // render _geometry->render(); // disable shader _programObject->deactivate(); } void RenderablePlanet::update(const UpdateData& data) { // set spice-orientation in accordance to timestamp _stateMatrix = data.modelTransform.rotation; //_stateMatrix = SpiceManager::ref().positionTransformMatrix(_frame, "GALACTIC", data.time); _time = data.time; } void RenderablePlanet::loadTexture() { _texture = nullptr; if (_colorTexturePath.value() != "") { _texture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_colorTexturePath))); if (_texture) { if (_texture->numberOfChannels() == 1) { _texture->setSwizzleMask({ GL_RED, GL_RED, GL_RED, GL_RED }); } LDEBUG("Loaded texture from '" << _colorTexturePath << "'"); _texture->uploadTexture(); // Textures of planets looks much smoother with AnisotropicMipMap rather than linear // TODO: AnisotropicMipMap crashes on ATI cards ---abock //_texture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap); _texture->setFilter(ghoul::opengl::Texture::FilterMode::Linear); } } GLenum err; while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error after reading color texture. OpenGL error: " << errString); } if (_hasNightTexture) { _nightTexture = nullptr; if (_nightTexturePath.value() != "") { _nightTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_nightTexturePath))); if (_nightTexture) { LDEBUG("Loaded texture from '" << _nightTexturePath << "'"); _nightTexture->uploadTexture(); _nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear); //_nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap); } } } while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error after reading night texture. OpenGL error: " << errString); } if (_hasHeightTexture) { _heightMapTexture = nullptr; if (_heightMapTexturePath.value() != "") { _heightMapTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_heightMapTexturePath))); if (_heightMapTexture) { LDEBUG("Loaded texture from '" << _heightMapTexturePath << "'"); _heightMapTexture->uploadTexture(); _heightMapTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear); //_nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap); } } } while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error after reading height mapping texture. OpenGL error: " << errString); } } } // namespace openspace