/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2022 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { constexpr const char* _loggerCat = "ExoplanetsModule"; } namespace openspace::exoplanets { bool isValidPosition(const glm::vec3& pos) { return !glm::any(glm::isnan(pos)); } bool hasSufficientData(const ExoplanetDataEntry& p) { const glm::vec3 starPosition{ p.positionX , p.positionY, p.positionZ }; bool validStarPosition = isValidPosition(starPosition); bool hasSemiMajorAxis = !std::isnan(p.a); bool hasOrbitalPeriod = !std::isnan(p.per); return validStarPosition && hasSemiMajorAxis && hasOrbitalPeriod; } glm::vec3 computeStarColor(float bv) { const ExoplanetsModule* module = global::moduleEngine->module(); const std::string bvColormapPath = module->bvColormapPath(); std::ifstream colorMap(absPath(bvColormapPath), std::ios::in); if (!colorMap.good()) { LERROR(fmt::format( "Failed to open colormap data file: {}", absPath(bvColormapPath) )); return glm::vec3(0.f); } // Interpret the colormap cmap file std::string line; while (std::getline(colorMap, line)) { if (line.empty() || (line[0] == '#')) { continue; } break; } // The first line is the width of the image, i.e number of values std::istringstream ss(line); int nValues; ss >> nValues; // Find the line matching the input B-V value (B-V is in [-0.4,2.0]) const int t = static_cast(round(((bv + 0.4) / (2.0 + 0.4)) * (nValues - 1))); std::string color; for (int i = 0; i < t + 1; i++) { getline(colorMap, color); } colorMap.close(); std::istringstream colorStream(color); float r, g, b; colorStream >> r >> g >> b; return glm::vec3(r, g, b); } glm::dmat4 computeOrbitPlaneRotationMatrix(float i, float bigom, float omega) { // Exoplanet defined inclination changed to be used as Kepler defined inclination const glm::dvec3 ascendingNodeAxisRot = glm::dvec3(0.0, 0.0, 1.0); const glm::dvec3 inclinationAxisRot = glm::dvec3(1.0, 0.0, 0.0); const glm::dvec3 argPeriapsisAxisRot = glm::dvec3(0.0, 0.0, 1.0); const double asc = glm::radians(bigom); const double inc = glm::radians(i); const double per = glm::radians(omega); const glm::dmat4 orbitPlaneRotation = glm::rotate(asc, glm::dvec3(ascendingNodeAxisRot)) * glm::rotate(inc, glm::dvec3(inclinationAxisRot)) * glm::rotate(per, glm::dvec3(argPeriapsisAxisRot)); return orbitPlaneRotation; } glm::dmat3 computeSystemRotation(glm::dvec3 starPosition) { const glm::dvec3 sunPosition = glm::dvec3(0.0, 0.0, 0.0); const glm::dvec3 starToSunVec = glm::normalize(sunPosition - starPosition); const glm::dvec3 galacticNorth = glm::dvec3(0.0, 0.0, 1.0); const glm::dmat3 galacticToCelestialMatrix = SpiceManager::ref().positionTransformMatrix("GALACTIC", "J2000", 0.0); const glm::dvec3 celestialNorth = glm::normalize( galacticToCelestialMatrix * galacticNorth ); // Earth's north vector projected onto the skyplane, the plane perpendicular to the // viewing vector (starToSunVec) const float celestialAngle = static_cast(glm::dot( celestialNorth, starToSunVec )); glm::dvec3 northProjected = glm::normalize( celestialNorth - (celestialAngle / glm::length(starToSunVec)) * starToSunVec ); const glm::dvec3 beta = glm::normalize(glm::cross(starToSunVec, northProjected)); return glm::dmat3( northProjected.x, northProjected.y, northProjected.z, beta.x, beta.y, beta.z, starToSunVec.x, starToSunVec.y, starToSunVec.z ); } std::string createIdentifier(std::string name) { std::replace(name.begin(), name.end(), ' ', '_'); std::replace(name.begin(), name.end(), '.', '-'); sanitizeNameString(name); return name; } void sanitizeNameString(std::string& s) { // We want to avoid quotes and apostrophes in names, since they cause problems // when a string is translated to a script call s.erase(remove(s.begin(), s.end(), '\"'), s.end()); s.erase(remove(s.begin(), s.end(), '\''), s.end()); } } // namespace openspace::exoplanets