/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2015 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { const std::string _loggerCat = "RenderableFov"; //constants const std::string keyBody = "Body"; const std::string keyFrame = "Frame"; const std::string keyPathModule = "ModulePath"; const std::string keyColor = "RGB"; const std::string keyInstrument = "Instrument.Name"; const std::string keyInstrumentMethod = "Instrument.Method"; const std::string keyInstrumentAberration = "Instrument.Aberration"; const std::string keyPotentialTargets = "PotentialTargets"; // colors, move later glm::vec4 col_sq; glm::vec4 c_project; glm::vec4 col_end; glm::vec4 blue; glm::vec4 col_gray; glm::vec4 col_start; } namespace openspace { RenderableFov::RenderableFov(const ghoul::Dictionary& dictionary) : Renderable(dictionary) , _lineWidth("lineWidth", "Line Width", 1.f, 1.f, 20.f) , _drawSolid("solidDraw", "Draw as Quads", false) , _programObject(nullptr) , _texture(nullptr) , _mode(GL_LINES) { bool success = dictionary.getValue(keyBody, _spacecraft); ghoul_assert(success, ""); success = dictionary.getValue(keyFrame, _frame); ghoul_assert(success, ""); success = dictionary.getValue(keyInstrument, _instrumentID); ghoul_assert(success, ""); success = dictionary.getValue(keyInstrumentMethod, _method); ghoul_assert(success, ""); success = dictionary.getValue(keyInstrumentAberration, _aberrationCorrection); ghoul_assert(success, ""); ghoul::Dictionary potentialTargets; success = dictionary.getValue(keyPotentialTargets, potentialTargets); ghoul_assert(success, ""); _potentialTargets.resize(potentialTargets.size()); for (int i = 0; i < potentialTargets.size(); ++i) { std::string target; potentialTargets.getValue(std::to_string(i + 1), target); _potentialTargets[i] = target; } addProperty(_lineWidth); addProperty(_drawSolid); } void RenderableFov::allocateData() { int points = 20; _stride[0] = points; _isize[0] = points; _iarray1[0] = new int[_isize[0]]; for (int i = 0; i < points; i++){ for (int j = 0; j < 4; j++){ _varray1.push_back(0); // pos } for (int j = 0; j < 4; j++){ _varray1.push_back(0); // col } _iarray1[0][i] = i; } _stride[0] = 8; _vsize[0] = static_cast(_varray1.size()); _vtotal[0] = static_cast(_vsize[0] / _stride[0]); // allocate second vbo data int cornerPoints = 12; _isize[1] = cornerPoints; _iarray1[1] = new int[_isize[1]]; for (unsigned int i = 0; i < _isize[1]; i++){ _iarray1[1][i] = i; } _varray2.resize(40); _vsize[1] = 40; _vtotal[1] = 5; _isteps = 10; } RenderableFov::~RenderableFov() { delete[] _iarray1[0]; delete[] _iarray1[1]; deinitialize(); } bool RenderableFov::initialize() { bool completeSuccess = true; if (_programObject == nullptr) { _programObject = ghoul::opengl::ProgramObject::Build("FovProgram", "${MODULE_NEWHORIZONS}/shaders/fov_vs.glsl", "${MODULE_NEWHORIZONS}/shaders/fov_fs.glsl"); if (!_programObject) return false; } allocateData(); sendToGPU(); return completeSuccess; } bool RenderableFov::deinitialize() { return true; } bool RenderableFov::isReady() const { return _programObject != nullptr; } void RenderableFov::sendToGPU() { // Initialize and upload to graphics card glGenVertexArrays(1, &_vaoID[0]); glGenBuffers(1, &_vboID[0]); glGenBuffers(1, &_iboID[0]); glBindVertexArray(_vaoID[0]); glBindBuffer(GL_ARRAY_BUFFER, _vboID[0]); glBufferData(GL_ARRAY_BUFFER, _vsize[0] * sizeof(GLfloat), NULL, GL_STATIC_DRAW); // orphaning the buffer, sending NULL data. glBufferSubData(GL_ARRAY_BUFFER, 0, _vsize[0] * sizeof(GLfloat), &_varray1[0]); GLsizei st = sizeof(GLfloat) * _stride[0]; glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, st, (void*)0); glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, st, (void*)(4 * sizeof(GLfloat))); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iboID[0]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, _isize[0] * sizeof(int), _iarray1, GL_STATIC_DRAW); glBindVertexArray(0); // second vbo glGenVertexArrays(1, &_vaoID[1]); glGenBuffers(1, &_vboID[1]); glGenBuffers(1, &_iboID[1]); glBindVertexArray(_vaoID[1]); glBindBuffer(GL_ARRAY_BUFFER, _vboID[1]); glBufferData(GL_ARRAY_BUFFER, _vsize[1] * sizeof(GLfloat), NULL, GL_STATIC_DRAW); // orphaning the buffer, sending NULL data. glBufferSubData(GL_ARRAY_BUFFER, 0, _vsize[1] * sizeof(GLfloat), &_varray2[0]); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, st, (void*)0); glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, st, (void*)(4 * sizeof(GLfloat))); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iboID[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, _isize[1] * sizeof(int), _iarray1[1], GL_STATIC_DRAW); glBindVertexArray(0); } // various helper methods void RenderableFov::insertPoint(std::vector& arr, psc p, glm::vec4 c) { for (int i = 0; i < 4; i++){ arr.push_back(p[i]); } for (int i = 0; i < 4; i++){ arr.push_back(c[i]); } _nrInserted++; } glm::dvec3 RenderableFov::interpolate(glm::dvec3 p0, glm::dvec3 p1, float t) { assert(t >= 0 && t <= 1); float t2 = (1.f - t); return glm::dvec3(p0.x*t2 + p1.x*t, p0.y*t2 + p1.y*t, p0.z*t2 + p1.z*t); } glm::dvec3 RenderableFov::pscSlerp(glm::dvec3 p0, glm::dvec3 p1, float t){ assert(t >= 0 && t <= 1); float t2 = (1.f - t); float omega = acosf(glm::dot(p0, p1)); if (omega > 0.f){ float s1 = sin(t*omega) / sin(omega); float s2 = sin(t2*omega) / sin(omega); return glm::dvec3(p0.x*s2 + p1.x*s1, p0.y*s2 + p1.y*s1, p0.z*s2 + p1.z*s1); } return p0;//tmp } // This method is the current bottleneck. psc RenderableFov::checkForIntercept(glm::dvec3 ray) { double targetEt; bool intercepted = false; openspace::SpiceManager::ref().getSurfaceIntercept(_fovTarget, _spacecraft, _instrumentID, _frame, _method, _aberrationCorrection, _time, targetEt, ray, ipoint, ivec, intercepted); ivec *= 0.9999; _interceptVector = PowerScaledCoordinate::CreatePowerScaledCoordinate(ivec[0], ivec[1], ivec[2]); _interceptVector[3] += 3; return _interceptVector; } // Orthogonal projection next to planets surface, can also be optimized. psc RenderableFov::orthogonalProjection(glm::dvec3 vecFov) { glm::dvec3 vecToTarget; double lt; SpiceManager::ref().getTargetPosition(_fovTarget, _spacecraft, _frame, _aberrationCorrection, _time, vecToTarget, lt); openspace::SpiceManager::ref().frameConversion(vecFov, _instrumentID, _frame, _time); glm::dvec3 p = openspace::SpiceManager::ref().orthogonalProjection(vecToTarget, vecFov); psc projection = PowerScaledCoordinate::CreatePowerScaledCoordinate(p[0], p[1], p[2]); projection[3] += 3; return projection; } // Bisection method, simple recurtion glm::dvec3 RenderableFov::bisection(glm::dvec3 p1, glm::dvec3 p2, double tolerance) { //check if point is on surface double targetEt; glm::dvec3 half = interpolate(p1, p2, 0.5f); bool intercepted = false; openspace::SpiceManager::ref().getSurfaceIntercept(_fovTarget, _spacecraft, _instrumentID, _frame, _method, _aberrationCorrection, _time, targetEt, half, ipoint, ivec, intercepted); if (glm::distance(_previousHalf, half) < tolerance){ _previousHalf = glm::dvec3(0); return half; } _previousHalf = half; //recursive search if (!intercepted){ return bisection(p1, half, tolerance); }else{ return bisection(half, p2, tolerance); } } /* README: There are 4 different cases as each boundary vector can either have detected an intercept or is outside of the planets surface. When no such intercepts are detected the algorithm performs an orthogonal projection to 'clip' the current fov vector next to the planets surface. If two or more intercepts are detected the algorithm continues with the bisection method O(logn) for points [Pn, Pn+1] to locate the point Pb where the orthogonal plane meets the planets surface (within ~20 iterations this will narrow down to centimeter resolution). Upon finding Pb a linear interpolation is performed for [Pn, Pb], at this stage the points are located on a straight line between the surface intercept and the surface-bound fov-corner. In order to correctly place these points on the targets surface, each consecutive point is queried for a surface intercept and thereby moved to the hull. */ void RenderableFov::fovProjection(bool H[], std::vector bounds) { _nrInserted = 0; _varray2.clear();// empty the array double tolerance = 0.0000001; // very low tolerance factor glm::dvec3 mid; glm::dvec3 interpolated; glm::dvec3 current; glm::dvec3 next; glm::vec4 tmp(1); glm::vec4 test_col(0, 0, 1, 1); if (bounds.size() > 1){ for (int i = 0; i < bounds.size(); i++){ int k = (i + 1 > bounds.size() - 1) ? 0 : i + 1; current = bounds[i]; next = bounds[k]; if (H[i] == false){ // If point is non-interceptive, project it. insertPoint(_varray2, orthogonalProjection(current), tmp); } if (H[i] == true && H[i + 1] == false){ // current point is interceptive, next is not // find outer most point for interpolation mid = bisection(current, next, tolerance); for (int j = 1; j <= _isteps; j++){ float t = (static_cast(j) / _isteps); interpolated = interpolate(current, mid, t); _interceptVector = (j < _isteps) ? checkForIntercept(interpolated) : orthogonalProjection(interpolated); insertPoint(_varray2, _interceptVector, col_sq); } } if (H[i] == false && H[i + 1] == true){ // current point is non-interceptive, next is mid = bisection(next, current, tolerance); for (int j = 1; j <= _isteps; j++){ float t = (static_cast(j) / _isteps); interpolated = interpolate(mid, next, t); _interceptVector = (j > 1) ? checkForIntercept(interpolated) : orthogonalProjection(interpolated); insertPoint(_varray2, _interceptVector, col_sq); } } if (H[i] == true && H[i + 1] == true){ // both points intercept for (int j = 0; j <= _isteps; j++){ float t = (static_cast(j) / _isteps); interpolated = interpolate(current, next, t); _interceptVector = checkForIntercept(interpolated); insertPoint(_varray2, _interceptVector, col_sq); } } } } if (_nrInserted == 0){ _rebuild = false; } else { _rebuild = true; //update size etc; _vtotal[1] = _nrInserted; _isize[1] = _nrInserted; _vsize[1] = static_cast(_varray2.size()); _iarray1[1] = new int[_isize[1]]; for (unsigned int i = 0; i < _isize[1]; i++) _iarray1[1][i] = i; } } void RenderableFov::updateData() { glBindBuffer(GL_ARRAY_BUFFER, _vboID[0]); glBufferSubData(GL_ARRAY_BUFFER, 0, _vsize[0] * sizeof(GLfloat), &_varray1[0]); if (!_rebuild){ glBindBuffer(GL_ARRAY_BUFFER, _vboID[1]); glBufferSubData(GL_ARRAY_BUFFER, 0, _vsize[1] * sizeof(GLfloat), &_varray2[0]); }else{ glBindVertexArray(_vaoID[1]); glBindBuffer(GL_ARRAY_BUFFER, _vboID[1]); glBufferData(GL_ARRAY_BUFFER, _vsize[1] * sizeof(GLfloat), NULL, GL_STATIC_DRAW); // orphaning the buffer, sending NULL data. glBufferSubData(GL_ARRAY_BUFFER, 0, _vsize[1] * sizeof(GLfloat), &_varray2[0]); GLsizei st = sizeof(GLfloat) * _stride[0]; glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, st, (void*)0); glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, st, (void*)(4 * sizeof(GLfloat))); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iboID[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, _isize[1] * sizeof(int), _iarray1[1], GL_STATIC_DRAW); glBindVertexArray(0); } } void RenderableFov::computeColors() { double t2 = openspace::ImageSequencer2::ref().getNextCaptureTime(); double diff = (t2 - _time); float t = 0.0; if (diff <= 7.0) t = static_cast(1.0 - (diff / 7.0)); if (diff < 0.0) t = 0.f; // i need to add an *.h file with colortables.... c_project = glm::vec4(0.0, 1.0, 0.00,1); col_end = glm::vec4(1.00, 0.29, 0.00, 1); blue = glm::vec4(0, 0.5, 0.7, 1); col_gray = glm::vec4(0.7); col_start = glm::vec4(1.00, 0.89, 0.00, 1); col_sq = glm::vec4(1.00, 0.29, 0.00, 1); col_end.x = c_project.x*t + col_end.x*(1 - t); col_end.y = c_project.y*t + col_end.y*(1 - t); col_end.z = c_project.z*t + col_end.z*(1 - t); blue.x = c_project.x*t + blue.x*(1 - t); blue.y = c_project.y*t + blue.y*(1 - t); blue.z = c_project.z*t + blue.z*(1 - t); col_sq.x = c_project.x*t + col_sq.x*(1 - t); col_sq.y = c_project.y*t + col_sq.y*(1 - t); col_sq.z = c_project.z*t + col_sq.z*(1 - t); blue.w = 0.5; c_project.w = 0.5; col_end.w = 0.5; } void RenderableFov::render(const RenderData& data) { assert(_programObject); _programObject->activate(); // fetch data glm::mat4 transform(1); glm::mat4 spacecraftRot = glm::mat4(1); for (int i = 0; i < 3; i++){ for (int j = 0; j < 3; j++){ spacecraftRot[i][j] = static_cast(_stateMatrix[i][j]); } } bool drawFOV = false; // setup the data to the shader _programObject->setUniform("ViewProjection", data.camera.viewProjectionMatrix()); _programObject->setUniform("ModelTransform", transform); setPscUniforms(_programObject, &data.camera, data.position); if (openspace::ImageSequencer2::ref().isReady()){ drawFOV = ImageSequencer2::ref().instrumentActive(_instrumentID); } if (drawFOV){ // update only when time progresses. if (_oldTime != _time){ std::string shape, instrument; std::vector bounds; glm::dvec3 boresight; // fetch data for specific instrument (shape, boresight, bounds etc) bool found = openspace::SpiceManager::ref().getFieldOfView(_instrumentID, shape, instrument, boresight, bounds); if (!found) { LERROR("Could not locate instrument"); return; } const unsigned int size = 4 * sizeof(float); int indx = 0; _fovTarget = _potentialTargets[0]; //default for (int i = 0; i < _potentialTargets.size(); i++){ bool success = openspace::SpiceManager::ref().targetWithinFieldOfView( _instrumentID, _potentialTargets[i], _spacecraft, _method, _aberrationCorrection, _time, _withinFOV); if (success && _withinFOV){ _fovTarget = _potentialTargets[i]; break; } } computeColors(); double targetEpoch; // for each FOV vector for (int i = 0; i <= bounds.size(); i++){ int r = (i == bounds.size()) ? 0 : i; // compute surface intercept openspace::SpiceManager::ref().getSurfaceIntercept(_fovTarget, _spacecraft, _instrumentID, _frame, _method, _aberrationCorrection, _time, targetEpoch, bounds[r], ipoint, ivec, _interceptTag[r]); // if not found, use the orthogonal projected point if (!_interceptTag[r]) _projectionBounds[r] = orthogonalProjection(bounds[r]); // VBO1 : draw vectors representing outer points of FOV. if (_interceptTag[r]){ _interceptVector = PowerScaledCoordinate::CreatePowerScaledCoordinate(ivec[0], ivec[1], ivec[2]); _interceptVector[3] += 3; // INTERCEPTIONS memcpy(&_varray1[indx], glm::value_ptr(glm::vec4(0)), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(col_start), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(_interceptVector.vec4()), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(col_end), size); indx += 4; } else if (_withinFOV){ // FOV OUTSIDE OBJECT memcpy(&_varray1[indx], glm::value_ptr(glm::vec4(0)), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(glm::vec4(0, 0, 1, 1)), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(_projectionBounds[r].vec4()), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(blue), size); indx += 4; } else{ glm::vec4 corner(bounds[r][0], bounds[r][1], bounds[r][2], data.position[3] + 2); corner = spacecraftRot*corner; // "INFINITE" FOV memcpy(&_varray1[indx], glm::value_ptr(glm::vec4(0)), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(col_gray), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(corner), size); indx += 4; memcpy(&_varray1[indx], glm::value_ptr(glm::vec4(0)), size); indx += 4; } } _interceptTag[bounds.size()] = _interceptTag[0]; if (!(_instrumentID == "NH_LORRI") && !(_instrumentID == "ROS_NAVCAM-A")) // image plane replaces fov square fovProjection(_interceptTag, bounds); updateData(); glm::vec3 aim = (spacecraftRot * glm::vec4(boresight, 1)).xyz; psc position; double lt; SpiceManager::ref().getTargetPosition(_fovTarget, _spacecraft, _frame, _aberrationCorrection, _time, position, lt); pss length = position.length(); if (length[0] < DBL_EPSILON) { drawFOV = false; return; } //if aimed 80 deg away from target, dont draw white square if (glm::dot(glm::normalize(aim), glm::normalize(position.vec3())) < 0.2){ drawFOV = false; } } _oldTime = _time; if (!_drawSolid) _mode = GL_LINES; else _mode = GL_TRIANGLE_STRIP; glLineWidth(_lineWidth); glBindVertexArray(_vaoID[0]); glDrawArrays(_mode, 0, _vtotal[0]); glBindVertexArray(0); if (drawFOV){ glLineWidth(2.f); glBindVertexArray(_vaoID[1]); glDrawArrays(GL_LINE_LOOP, 0, _vtotal[1]); glBindVertexArray(0); //trying to improve interpolation altorithm @mm //glPointSize(5.f); //glBindVertexArray(_vaoID[1]); //glDrawArrays(GL_POINTS, 0, _vtotal[1]); //glBindVertexArray(0); //glPointSize(1.f); } glLineWidth(1.f); } _programObject->deactivate(); } void RenderableFov::update(const UpdateData& data) { _time = data.time; openspace::SpiceManager::ref().getPositionTransformMatrix(_instrumentID, _frame, data.time, _stateMatrix); } } // namespace openspace