/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2024 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include namespace { constexpr std::string_view _loggerCat = "LocalErrorHistogramManager"; } // namespace namespace openspace { LocalErrorHistogramManager::LocalErrorHistogramManager(TSP* tsp) : _tsp(tsp) {} bool LocalErrorHistogramManager::buildHistograms(int numBins) { LINFO(std::format("Build histograms with {} bins each", numBins)); _numBins = numBins; _file = &(_tsp->file()); if (!_file->is_open()) { return false; } _minBin = 0.f; // Should be calculated from tsp file _maxBin = 1.f; // Should be calculated from tsp file as (maxValue - minValue) const unsigned int numOtLevels = _tsp->numOTLevels(); const unsigned int numOtLeaves = static_cast(pow(8, numOtLevels - 1)); const unsigned int numBstLeaves = static_cast( pow(2, _tsp->numBSTLevels() - 1) ); _numInnerNodes = _tsp->numTotalNodes() - numOtLeaves * numBstLeaves; _spatialHistograms = std::vector(_numInnerNodes); _temporalHistograms = std::vector(_numInnerNodes); for (unsigned int i = 0; i < _numInnerNodes; i++) { _spatialHistograms[i] = Histogram(_minBin, _maxBin, numBins); _temporalHistograms[i] = Histogram(_minBin, _maxBin, numBins); } // All TSP Leaves const int numOtNodes = _tsp->numOTNodes(); const int otOffset = static_cast((pow(8, numOtLevels - 1) - 1) / 7); const int numBstNodes = _tsp->numBSTNodes(); const int bstOffset = numBstNodes / 2; const int numberOfLeaves = numOtLeaves * numBstLeaves; LINFO("Building spatial histograms"); ProgressBar pb1(numberOfLeaves); int processedLeaves = 0; pb1.print(processedLeaves); bool success = true; for (int bst = bstOffset; bst < numBstNodes; bst++) { for (int ot = otOffset; ot < numOtNodes; ot++) { success &= buildFromOctreeChild(bst, ot); if (!success) { LERROR("Failed in buildFromOctreeChild"); return false; } pb1.print(processedLeaves++); } } LINFO("Building temporal histograms"); ProgressBar pb2(numberOfLeaves); processedLeaves = 0; pb2.print(processedLeaves); for (int ot = otOffset; ot < numOtNodes; ot++) { for (int bst = bstOffset; bst < numBstNodes; bst++) { success &= buildFromBstChild(bst, ot); if (!success) { LERROR("Failed in buildFromBstChild"); return false; } pb2.print(processedLeaves++); } } return success; } bool LocalErrorHistogramManager::buildFromOctreeChild(unsigned int bstOffset, unsigned int octreeOffset) { // Add errors to octree parent histogram const int numOtNodes = _tsp->numOTNodes(); const unsigned int childIndex = bstOffset * numOtNodes + octreeOffset; const bool isOctreeLeaf = _tsp->isOctreeLeaf(childIndex); if (octreeOffset > 0) { // Not octree root std::vector childValues; std::vector parentValues; const int octreeParent = parentOffset(octreeOffset, 8); const unsigned int parentIndex = bstOffset * numOtNodes + octreeParent; const unsigned int parentInnerNodeIndex = brickToInnerNodeIndex(parentIndex); if (isOctreeLeaf) { childValues = readValues(childIndex); } else { const unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); auto it = _voxelCache.find(childInnerNodeIndex); if (it != _voxelCache.end()) { childValues = it->second; } else { LERROR(std::format( "Child {} visited without cache, {}, {}", childIndex, bstOffset, octreeOffset )); return false; } } const int octreeChildIndex = (octreeOffset - 1) % 8; if (octreeChildIndex == 0) { parentValues = readValues(parentIndex); _voxelCache[parentInnerNodeIndex] = parentValues; } else { auto it = _voxelCache.find(parentInnerNodeIndex); if (it != _voxelCache.end()) { parentValues = it->second; } else { LERROR(std::format("Parent {} visited without cache", parentIndex)); return false; } } // Compare values and add errors to parent histogram const unsigned int paddedBrickDim = _tsp->paddedBrickDim(); const int brickDim = static_cast(_tsp->brickDim()); const unsigned int padding = (paddedBrickDim - brickDim) / 2; glm::vec3 parentOffset = glm::vec3( octreeChildIndex % 2, (octreeChildIndex / 2) % 2, octreeChildIndex / 4 ) * (brickDim / 2.f); for (int z = 0; z < brickDim; z++) { for (int y = 0; y < brickDim; y++) { for (int x = 0; x < brickDim; x++) { glm::ivec3 childSamplePoint = glm::ivec3(x, y, z) + glm::ivec3(padding); glm::vec3 parentSamplePoint = parentOffset + glm::vec3(x + 0.5f, y + 0.5f, z + 0.5f) * 0.5f; float childValue = childValues[linearCoords(childSamplePoint)]; float parentValue = interpolate(parentSamplePoint, parentValues); // Divide by number of child voxels that will be taken into account float rectangleHeight = std::abs(childValue - parentValue) / 8.f; _spatialHistograms[parentInnerNodeIndex].addRectangle( childValue, parentValue, rectangleHeight ); } } } const bool isLastOctreeChild = octreeOffset > 0 && octreeChildIndex == 7; if (isLastOctreeChild) { buildFromOctreeChild(bstOffset, octreeParent); } } if (!isOctreeLeaf) { const unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); _voxelCache.erase(childInnerNodeIndex); } const int bstChildIndex = bstOffset % 2; const bool isLastBstChild = bstOffset > 0 && bstChildIndex == 0; if (isOctreeLeaf && isLastBstChild) { const int bstParent = parentOffset(bstOffset, 2); buildFromOctreeChild(bstParent, octreeOffset); } return true; } bool LocalErrorHistogramManager::buildFromBstChild(unsigned int bstOffset, unsigned int octreeOffset) { // Add errors to bst parent histogram const int numOtNodes = _tsp->numOTNodes(); const unsigned int childIndex = bstOffset * numOtNodes + octreeOffset; const bool isBstLeaf = _tsp->isBstLeaf(childIndex); if (bstOffset > 0) { // Not BST root std::vector childValues; std::vector parentValues; const int bstParent = parentOffset(bstOffset, 2); const unsigned int parentIndex = bstParent * numOtNodes + octreeOffset; const unsigned int parentInnerNodeIndex = brickToInnerNodeIndex(parentIndex); if (isBstLeaf) { childValues = readValues(childIndex); } else { unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); auto it = _voxelCache.find(childInnerNodeIndex); if (it != _voxelCache.end()) { childValues = it->second; } else { LERROR(std::format("Child {} visited without cache", childIndex)); return false; } } const int bstChildIndex = bstOffset % 2; if (bstChildIndex == 1) { parentValues = readValues(parentIndex); _voxelCache[parentInnerNodeIndex] = parentValues; } else { auto it = _voxelCache.find(parentInnerNodeIndex); if (it != _voxelCache.end()) { parentValues = it->second; } else { LERROR(std::format("Parent {} visited without cache", parentIndex)); return false; } } // Compare values and add errors to parent histogram const unsigned int paddedBrickDim = _tsp->paddedBrickDim(); const int brickDim = static_cast(_tsp->brickDim()); const unsigned int padding = (paddedBrickDim - brickDim) / 2; for (int z = 0; z < brickDim; z++) { for (int y = 0; y < brickDim; y++) { for (int x = 0; x < brickDim; x++) { glm::ivec3 samplePoint = glm::ivec3(x, y, z) + glm::ivec3(padding); unsigned int linearSamplePoint = linearCoords(samplePoint); float childValue = childValues[linearSamplePoint]; float parentValue = parentValues[linearSamplePoint]; // Divide by number of child voxels that will be taken into account float rectangleHeight = std::abs(childValue - parentValue) / 2.f; _temporalHistograms[parentInnerNodeIndex].addRectangle( childValue, parentValue, rectangleHeight ); } } } const bool isLastBstChild = bstOffset > 0 && bstChildIndex == 0; if (isLastBstChild) { buildFromBstChild(bstParent, octreeOffset); } } if (!isBstLeaf) { const unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); _voxelCache.erase(childInnerNodeIndex); } const int octreeChildIndex = (octreeOffset - 1) % 8; const bool isLastOctreeChild = octreeOffset > 0 && octreeChildIndex == 7; if (isBstLeaf && isLastOctreeChild) { const int octreeParent = parentOffset(octreeOffset, 8); buildFromBstChild(bstOffset, octreeParent); } return true; } bool LocalErrorHistogramManager::loadFromFile(const std::filesystem::path& filename) { std::ifstream file(filename, std::ios::in | std::ios::binary); if (!file.is_open()) { return false; } file.read(reinterpret_cast(&_numInnerNodes), sizeof(int)); file.read(reinterpret_cast(&_numBins), sizeof(int)); file.read(reinterpret_cast(&_minBin), sizeof(float)); file.read(reinterpret_cast(&_maxBin), sizeof(float)); const int nFloats = _numInnerNodes * _numBins; std::vector histogramData(nFloats); file.read(reinterpret_cast(histogramData.data()), sizeof(float) * nFloats); _spatialHistograms = std::vector(_numInnerNodes); for (unsigned int i = 0; i < _numInnerNodes; i++) { const int offset = i * _numBins; // No need to deallocate histogram data, since histograms take ownership. float* data = new float[_numBins]; memcpy(data, &histogramData[offset], sizeof(float) * _numBins); _spatialHistograms[i] = Histogram(_minBin, _maxBin, _numBins, data); } file.read(reinterpret_cast(histogramData.data()), sizeof(float) * nFloats); _temporalHistograms = std::vector(_numInnerNodes); for (unsigned int i = 0; i < _numInnerNodes; i++) { const int offset = i * _numBins; // No need to deallocate histogram data, since histograms take ownership. float* data = new float[_numBins]; memcpy(data, &histogramData[offset], sizeof(float) * _numBins); _temporalHistograms[i] = Histogram(_minBin, _maxBin, _numBins, data); } file.close(); return true; } bool LocalErrorHistogramManager::saveToFile(const std::filesystem::path& filename) { std::ofstream file(filename, std::ios::out | std::ios::binary); if (!file.is_open()) { return false; } file.write(reinterpret_cast(&_numInnerNodes), sizeof(int)); file.write(reinterpret_cast(&_numBins), sizeof(int)); file.write(reinterpret_cast(&_minBin), sizeof(float)); file.write(reinterpret_cast(&_maxBin), sizeof(float)); const int nFloats = _numInnerNodes * _numBins; std::vector histogramData(nFloats); for (unsigned int i = 0; i < _numInnerNodes; i++) { int offset = i * _numBins; memcpy( &histogramData[offset], _spatialHistograms[i].data(), sizeof(float) * _numBins ); } file.write(reinterpret_cast(histogramData.data()), sizeof(float) * nFloats); for (unsigned int i = 0; i < _numInnerNodes; i++) { int offset = i * _numBins; memcpy( &histogramData[offset], _temporalHistograms[i].data(), sizeof(float) * _numBins ); } file.write(reinterpret_cast(histogramData.data()), sizeof(float) * nFloats); file.close(); return true; } unsigned int LocalErrorHistogramManager::linearCoords(glm::vec3 coords) const { return linearCoords(glm::ivec3(coords)); } unsigned int LocalErrorHistogramManager::linearCoords(int x, int y, int z) const { return linearCoords(glm::ivec3(x, y, z)); } unsigned int LocalErrorHistogramManager::linearCoords(glm::ivec3 coords) const { unsigned int paddedBrickDim = _tsp->paddedBrickDim(); return coords.z * paddedBrickDim * paddedBrickDim + coords.y * paddedBrickDim + coords.x; } float LocalErrorHistogramManager::interpolate(glm::vec3 samplePoint, const std::vector& voxels) const { const int lowX = static_cast(samplePoint.x); const int lowY = static_cast(samplePoint.y); const int lowZ = static_cast(samplePoint.z); const int highX = static_cast(ceil(samplePoint.x)); const int highY = static_cast(ceil(samplePoint.y)); const int highZ = static_cast(ceil(samplePoint.z)); const float interpolatorX = 1.f - (samplePoint.x - lowX); const float interpolatorY = 1.f - (samplePoint.y - lowY); const float interpolatorZ = 1.f - (samplePoint.z - lowZ); const float v000 = voxels[linearCoords(lowX, lowY, lowZ)]; const float v001 = voxels[linearCoords(lowX, lowY, highZ)]; const float v010 = voxels[linearCoords(lowX, highY, lowZ)]; const float v011 = voxels[linearCoords(lowX, highY, highZ)]; const float v100 = voxels[linearCoords(highX, lowY, lowZ)]; const float v101 = voxels[linearCoords(highX, lowY, highZ)]; const float v110 = voxels[linearCoords(highX, highY, lowZ)]; const float v111 = voxels[linearCoords(highX, highY, highZ)]; const float v00 = interpolatorZ * v000 + (1.f - interpolatorZ) * v001; const float v01 = interpolatorZ * v010 + (1.f - interpolatorZ) * v011; const float v10 = interpolatorZ * v100 + (1.f - interpolatorZ) * v101; const float v11 = interpolatorZ * v110 + (1.f - interpolatorZ) * v111; const float v0 = interpolatorY * v00 + (1.f - interpolatorY) * v01; const float v1 = interpolatorY * v10 + (1.f - interpolatorY) * v11; return interpolatorX * v0 + (1.f - interpolatorX) * v1; } const Histogram* LocalErrorHistogramManager::spatialHistogram( unsigned int brickIndex) const { const unsigned int innerNodeIndex = brickToInnerNodeIndex(brickIndex); if (innerNodeIndex < _numInnerNodes) { return &(_spatialHistograms[innerNodeIndex]); } else { return nullptr; } } const Histogram* LocalErrorHistogramManager::temporalHistogram( unsigned int brickIndex) const { const unsigned int innerNodeIndex = brickToInnerNodeIndex(brickIndex); if (innerNodeIndex < _numInnerNodes) { return &(_temporalHistograms[innerNodeIndex]); } else { return nullptr; } } int LocalErrorHistogramManager::parentOffset(int offset, int base) const { if (offset == 0) { return -1; } const int depth = static_cast( floor(log1p(((base - 1) * offset)) / log(base)) ); const int firstInLevel = static_cast((pow(base, depth) - 1) / (base - 1)); const int inLevelOffset = offset - firstInLevel; const int parentDepth = depth - 1; const int firstInParentLevel = static_cast( (pow(base, parentDepth) - 1) / (base - 1) ); const int parentInLevelOffset = inLevelOffset / base; const int parentOffset = firstInParentLevel + parentInLevelOffset; return parentOffset; } std::vector LocalErrorHistogramManager::readValues(unsigned int brickIndex) const { const unsigned int paddedBrickDim = _tsp->paddedBrickDim(); const unsigned int numBrickVals = paddedBrickDim * paddedBrickDim * paddedBrickDim; std::vector voxelValues(numBrickVals); std::streampos offset = _tsp->dataPosition() + static_cast(brickIndex*numBrickVals*sizeof(float)); _file->seekg(offset); _file->read( reinterpret_cast(voxelValues.data()), static_cast(numBrickVals)*sizeof(float) ); return voxelValues; } unsigned int LocalErrorHistogramManager::brickToInnerNodeIndex( unsigned int brickIndex) const { const unsigned int numOtNodes = _tsp->numOTNodes(); const unsigned int numBstLevels = _tsp->numBSTLevels(); const unsigned int numInnerBstNodes = static_cast( (pow(2, numBstLevels - 1) - 1) * numOtNodes ); if (brickIndex < numInnerBstNodes) { return brickIndex; } const unsigned int numOtLeaves = static_cast( pow(8, _tsp->numOTLevels() - 1) ); const unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves); const unsigned int innerBstOffset = brickIndex - numInnerBstNodes; const unsigned int rowIndex = innerBstOffset / numOtNodes; const unsigned int indexInRow = innerBstOffset % numOtNodes; if (indexInRow >= numOtInnerNodes) { return _numInnerNodes; } const unsigned int offset = rowIndex * numOtInnerNodes; const unsigned int leavesOffset = offset + indexInRow; return numInnerBstNodes + leavesOffset; } unsigned int LocalErrorHistogramManager::innerNodeToBrickIndex( unsigned int innerNodeIndex) const { const unsigned int numOtNodes = _tsp->numOTNodes(); const unsigned int numBstLevels = _tsp->numBSTLevels(); const unsigned int numInnerBstNodes = static_cast( (pow(2, numBstLevels - 1) - 1) * numOtNodes ); if (innerNodeIndex < numInnerBstNodes) { return innerNodeIndex; } const unsigned int numOtLeaves = static_cast( pow(8, _tsp->numOTLevels() - 1) ); const unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves); const unsigned int innerBstOffset = innerNodeIndex - numInnerBstNodes; const unsigned int rowIndex = innerBstOffset / numOtInnerNodes; const unsigned int indexInRow = innerBstOffset % numOtInnerNodes; const unsigned int offset = rowIndex * numOtNodes; const unsigned int leavesOffset = offset + indexInRow; return numInnerBstNodes + leavesOffset; } } // namespace openspace