/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include namespace { const std::string _loggerCat = "ChunkLevelEvaluator"; } namespace openspace { int EvaluateChunkLevelByDistance::getDesiredLevel(const Chunk& chunk, const RenderData& data) const { ChunkedLodGlobe const * globe = chunk.owner(); const Ellipsoid& ellipsoid = globe->ellipsoid(); Vec3 cameraPosition = data.camera.positionVec3(); Geodetic2 pointOnPatch = chunk.surfacePatch().closestPoint( ellipsoid.cartesianToGeodetic2(cameraPosition)); Chunk::BoundingHeights heights = chunk.getBoundingHeights(); Vec3 globePosition = data.position.dvec3(); Vec3 patchPosition = globePosition + ellipsoid.cartesianSurfacePosition(pointOnPatch); Vec3 cameraToChunk = patchPosition - cameraPosition; // Calculate desired level based on distance Scalar distanceToPatch = glm::length(cameraToChunk); Scalar distance = distanceToPatch - heights.min; // distance to actual minimum heights Scalar scaleFactor = globe->lodScaleFactor * ellipsoid.minimumRadius(); Scalar projectedScaleFactor = scaleFactor / distance; int desiredLevel = ceil(log2(projectedScaleFactor)); return desiredLevel; } int EvaluateChunkLevelByProjectedArea::getDesiredLevel(const Chunk& chunk, const RenderData& data) const { ChunkedLodGlobe const * globe = chunk.owner(); const Ellipsoid& ellipsoid = globe->ellipsoid(); Vec3 cameraPosition = data.camera.positionVec3(); Vec3 globePosition = data.position.dvec3(); Vec3 cameraToEllipseCenter = globePosition - cameraPosition; Geodetic2 camPos = ellipsoid.cartesianToGeodetic2(cameraPosition); /* struct CornerDist { Geodetic2 corner; float dist; }; struct { bool operator()(const CornerDist& a, const CornerDist& b) { return a.dist < b.dist; } } byDist; std::vector cornerDists(4); for (size_t i = 0; i < 4; i++) { const Geodetic2& c = chunk.surfacePatch().getCorner((Quad)i); Geodetic2 diff = (camPos - c); float latDiff = fAngle::fromRadians(diff.lat).getNormalizedAround(fAngle::ZERO).asRadians(); float lonDiff = fAngle::fromRadians(diff.lon).getNormalizedAround(fAngle::ZERO).asRadians(); cornerDists[i].corner = c; cornerDists[i].dist = latDiff*latDiff + lonDiff*lonDiff;; } std::sort(cornerDists.begin(), cornerDists.end(), byDist); Chunk::BoundingHeights heights = chunk.getBoundingHeights(); const Geodetic3 c0 = { cornerDists[0].corner, heights.min }; const Geodetic3 c1 = { cornerDists[1].corner, heights.min }; const Geodetic3 c2 = { cornerDists[2].corner, heights.max }; const Geodetic3 c3 = { cornerDists[3].corner, heights.max }; */ Chunk::BoundingHeights heights = chunk.getBoundingHeights(); const Geodetic3 c0 = { chunk.surfacePatch().getCorner((Quad)0), heights.min }; const Geodetic3 c1 = { chunk.surfacePatch().getCorner((Quad)1), heights.min }; const Geodetic3 c2 = { chunk.surfacePatch().getCorner((Quad)2), heights.min }; const Geodetic3 c3 = { chunk.surfacePatch().getCorner((Quad)3), heights.min }; Vec3 A = cameraToEllipseCenter + ellipsoid.cartesianPosition(c0); Vec3 B = cameraToEllipseCenter + ellipsoid.cartesianPosition(c1); Vec3 C = cameraToEllipseCenter + ellipsoid.cartesianPosition(c2); Vec3 D = cameraToEllipseCenter + ellipsoid.cartesianPosition(c3); // Project points onto unit sphere A = glm::normalize(A); B = glm::normalize(B); C = glm::normalize(C); D = glm::normalize(D); /* A-----____ | '''-----B | __--' | | __--'' | C-----------------D */ const Vec3 AB = B - A; const Vec3 AC = C - A; const Vec3 DC = C - D; const Vec3 DB = B - D; double areaTriangle1 = 0.5 * glm::length(glm::cross(AC, AB)); double areaTriangle2 = 0.5 * glm::length(glm::cross(DC, DB)); double projectedChunkAreaApprox = areaTriangle1 + areaTriangle2; double scaledArea = globe->lodScaleFactor * projectedChunkAreaApprox; return chunk.index().level + round(scaledArea - 1); } int EvaluateChunkLevelByAvailableTileData::getDesiredLevel(const Chunk& chunk, const RenderData& data) const { auto tileProvidermanager = chunk.owner()->getTileProviderManager(); auto heightMapProviders = tileProvidermanager->getActivatedLayerCategory(LayeredTextures::HeightMaps); int currLevel = chunk.index().level; // simply check the first heigtmap if (heightMapProviders.size() > 0) { Tile::Status heightTileStatus = heightMapProviders[0]->getTileStatus(chunk.index()); if (heightTileStatus == Tile::Status::IOError || heightTileStatus == Tile::Status::OutOfRange) { return currLevel-1; } return UNKNOWN_DESIRED_LEVEL; } return UNKNOWN_DESIRED_LEVEL; } } // namespace openspace