/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include namespace { const std::string _loggerCat = "FrustrumCuller"; } namespace openspace { ////////////////////////////////////////////////////////////////////////////////////// // FRUSTUM CULLER // ////////////////////////////////////////////////////////////////////////////////////// FrustumCuller::FrustumCuller() { } FrustumCuller::~FrustumCuller() { } bool FrustumCuller::isVisible( const RenderData& data, const vec3& point) { mat4 modelTransform = translate(mat4(1), data.position.vec3()); mat4 viewTransform = data.camera.combinedViewMatrix(); mat4 modelViewProjectionTransform = data.camera.projectionMatrix() * viewTransform * modelTransform; vec2 pointScreenSpace = transformToScreenSpace(point, modelViewProjectionTransform); return testPoint(pointScreenSpace, vec2(0)); } bool FrustumCuller::isVisible( const RenderData& data, const GeodeticPatch& patch, const Ellipsoid& ellipsoid) { // An axis aligned bounding box based on the patch's minimum boudning sphere is // used for testnig //mat4 viewTransform = glm::lookAt(vec3(6378137.0 + 1000, 0, 0), vec3(0, 5e6, 1e7), vec3(0, 0, 1)); //data.camera.combinedViewMatrix //Vec3 cameraPosition = vec3(inverse(viewTransform) * vec4(0, 0, 0, 1));// data.camera.position().dvec3(); // Calculate the MVP matrix mat4 modelTransform = translate(mat4(1), data.position.vec3()); mat4 viewTransform = data.camera.combinedViewMatrix(); mat4 modelViewProjectionTransform = data.camera.projectionMatrix() * viewTransform * modelTransform; // Calculate the patch's center point in screen space vec4 patchCenterModelSpace = vec4(ellipsoid.geodetic2ToCartesian(patch.center()), 1); vec4 patchCenterClippingSpace = modelViewProjectionTransform * patchCenterModelSpace; vec2 pointScreenSpace = (1.0f / patchCenterClippingSpace.w) * patchCenterClippingSpace.xy(); // Calculate the screen space margin that represents an axis aligned bounding // box based on the patch's minimum boudning sphere double boundingRadius = patch.minimalBoundingRadius(ellipsoid); vec4 marginClippingSpace = vec4(vec3(boundingRadius), 0) * data.camera.projectionMatrix(); vec2 marginScreenSpace = (1.0f / patchCenterClippingSpace.w) * marginClippingSpace.xy(); // Test the bounding box by testing the center point and the corresponding margin return testPoint(pointScreenSpace, marginScreenSpace); } bool FrustumCuller::testPoint(const glm::vec2& pointScreenSpace, const glm::vec2& marginScreenSpace) { const vec2& p = pointScreenSpace; vec2 cullBounds = vec2(1) + marginScreenSpace; return ((-cullBounds.x < p.x && p.x < cullBounds.x) && (-cullBounds.y < p.y && p.y < cullBounds.y)); } glm::vec2 FrustumCuller::transformToScreenSpace(const vec3& point, const mat4x4& modelViewProjection) { vec4 pointProjectionSpace = modelViewProjection * vec4(point, 1.0f); vec2 pointScreenSpace = (1.0f / pointProjectionSpace.w) * pointProjectionSpace.xy(); return pointScreenSpace; } ////////////////////////////////////////////////////////////////////////////////////// // HORIZON CULLER // ////////////////////////////////////////////////////////////////////////////////////// HorizonCuller::HorizonCuller() { } HorizonCuller::~HorizonCuller() { } bool HorizonCuller::isVisible( const Vec3& cameraPosition, const Vec3& globePosition, const Vec3& objectPosition, Scalar objectBoundingSphereRadius, Scalar minimumGlobeRadius) { Scalar distanceToHorizon = sqrt(pow(length(cameraPosition - globePosition), 2) - pow(minimumGlobeRadius, 2)); Scalar minimumAllowedDistanceToObjectFromHorizon = sqrt( pow(length(objectPosition - globePosition), 2) - pow(minimumGlobeRadius - objectBoundingSphereRadius, 2)); // Minimum allowed for the object to be occluded Scalar minimumAllowedDistanceToObjectSquared = pow(distanceToHorizon + minimumAllowedDistanceToObjectFromHorizon, 2) + pow(objectBoundingSphereRadius, 2); Scalar distanceToObjectSquared = pow(length(objectPosition - cameraPosition), 2); return distanceToObjectSquared < minimumAllowedDistanceToObjectSquared; } bool HorizonCuller::isVisible( const RenderData& data, const GeodeticPatch& patch, const Ellipsoid& ellipsoid, float height) { Vec3 globePosition = data.position.dvec3(); Scalar minimumGlobeRadius = ellipsoid.minimumRadius(); Vec3 cameraPosition = data.camera.position().dvec3(); Vec3 globeToCamera = cameraPosition - globePosition; Geodetic2 cameraPositionOnGlobe = ellipsoid.cartesianToGeodetic2(globeToCamera); Geodetic2 closestPatchPoint = patch.closestPoint(cameraPositionOnGlobe); return HorizonCuller::isVisible( cameraPosition, globePosition, ellipsoid.geodetic2ToCartesian(closestPatchPoint), height, minimumGlobeRadius); } } // namespace openspace