/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2017 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace openspace::globebrowsing { const TileIndex ChunkedLodGlobe::LEFT_HEMISPHERE_INDEX = TileIndex(0, 0, 1); const TileIndex ChunkedLodGlobe::RIGHT_HEMISPHERE_INDEX = TileIndex(1, 0, 1); const GeodeticPatch ChunkedLodGlobe::COVERAGE = GeodeticPatch(0, 0, 90, 180); ChunkedLodGlobe::ChunkedLodGlobe(const RenderableGlobe& owner, size_t segmentsPerPatch, std::shared_ptr layerManager) : Renderable({ { "Name", owner.name() } }) , minSplitDepth(2) , maxSplitDepth(22) , stats(StatsCollector(absPath("test_stats"), 1, StatsCollector::Enabled::No)) , _owner(owner) , _leftRoot(std::make_unique(Chunk(owner, LEFT_HEMISPHERE_INDEX))) , _rightRoot(std::make_unique(Chunk(owner, RIGHT_HEMISPHERE_INDEX))) , _layerManager(layerManager) , _shadersNeedRecompilation(true) { auto geometry = std::make_shared( static_cast(segmentsPerPatch), static_cast(segmentsPerPatch), TriangleSoup::Positions::No, TriangleSoup::TextureCoordinates::Yes, TriangleSoup::Normals::No ); _chunkCullers.push_back(std::make_unique()); _chunkCullers.push_back(std::make_unique( AABB3(glm::vec3(-1, -1, 0), glm::vec3(1, 1, 1e35))) ); _chunkEvaluatorByAvailableTiles = std::make_unique(); _chunkEvaluatorByProjectedArea = std::make_unique(); _chunkEvaluatorByDistance = std::make_unique(); _renderer = std::make_unique(geometry, layerManager); } // The destructor is defined here to make it feasiable to use a unique_ptr // with a forward declaration ChunkedLodGlobe::~ChunkedLodGlobe() {} bool ChunkedLodGlobe::isReady() const { return true; } std::shared_ptr ChunkedLodGlobe::layerManager() const { return _layerManager; } bool ChunkedLodGlobe::testIfCullable(const Chunk& chunk, const RenderData& renderData) const { if (_owner.debugProperties().performHorizonCulling && _chunkCullers[0]->isCullable(chunk, renderData)) { return true; } if (_owner.debugProperties().performFrustumCulling && _chunkCullers[1]->isCullable(chunk, renderData)) { return true; } return false; } const ChunkNode& ChunkedLodGlobe::findChunkNode(const Geodetic2& p) const { ghoul_assert(COVERAGE.contains(p), "Point must be in lat [-90, 90] and lon [-180, 180]"); return p.lon < COVERAGE.center().lon ? _leftRoot->find(p) : _rightRoot->find(p); } int ChunkedLodGlobe::getDesiredLevel( const Chunk& chunk, const RenderData& renderData) const { int desiredLevel = 0; if (_owner.debugProperties().levelByProjectedAreaElseDistance) { desiredLevel = _chunkEvaluatorByProjectedArea->getDesiredLevel(chunk, renderData); } else { desiredLevel = _chunkEvaluatorByDistance->getDesiredLevel(chunk, renderData); } int desiredLevelByAvailableData = _chunkEvaluatorByAvailableTiles->getDesiredLevel( chunk, renderData ); if (desiredLevelByAvailableData != chunklevelevaluator::Evaluator::UnknownDesiredLevel && _owner.debugProperties().limitLevelByAvailableData) { desiredLevel = glm::min(desiredLevel, desiredLevelByAvailableData); } desiredLevel = glm::clamp(desiredLevel, minSplitDepth, maxSplitDepth); return desiredLevel; } float ChunkedLodGlobe::getHeight(glm::dvec3 position) const { float height = 0; // Get the uv coordinates to sample from Geodetic2 geodeticPosition = _owner.ellipsoid().cartesianToGeodetic2(position); int chunkLevel = findChunkNode(geodeticPosition).getChunk().tileIndex().level; TileIndex tileIndex = TileIndex(geodeticPosition, chunkLevel); GeodeticPatch patch = GeodeticPatch(tileIndex); Geodetic2 geoDiffPatch = patch.getCorner(Quad::NORTH_EAST) - patch.getCorner(Quad::SOUTH_WEST); Geodetic2 geoDiffPoint = geodeticPosition - patch.getCorner(Quad::SOUTH_WEST); glm::vec2 patchUV = glm::vec2( geoDiffPoint.lon / geoDiffPatch.lon, geoDiffPoint.lat / geoDiffPatch.lat ); // Get the tile providers for the height maps const std::vector>& heightMapLayers = _layerManager->layerGroup(layergroupid::GroupID::HeightLayers).activeLayers(); for (const std::shared_ptr& layer : heightMapLayers) { tileprovider::TileProvider* tileProvider = layer->tileProvider(); if (!tileProvider) { continue; } // Transform the uv coordinates to the current tile texture ChunkTile chunkTile = tileProvider->getChunkTile(tileIndex); const Tile& tile = chunkTile.tile; const TileUvTransform& uvTransform = chunkTile.uvTransform; const TileDepthTransform& depthTransform = tileProvider->depthTransform(); if (tile.status() != Tile::Status::OK) { return 0; } ghoul::opengl::Texture* tileTexture = tile.texture(); if (!tileTexture) { return 0; } glm::vec2 transformedUv = layer->TileUvToTextureSamplePosition( uvTransform, patchUV, glm::uvec2(tileTexture->dimensions()) ); // Sample and do linear interpolation // (could possibly be moved as a function in ghoul texture) // Suggestion: a function in ghoul::opengl::Texture that takes uv coordinates // in range [0,1] and uses the set interpolation method and clamping. glm::uvec3 dimensions = tileTexture->dimensions(); glm::vec2 samplePos = transformedUv * glm::vec2(dimensions); glm::uvec2 samplePos00 = samplePos; samplePos00 = glm::clamp( samplePos00, glm::uvec2(0, 0), glm::uvec2(dimensions) - glm::uvec2(1) ); glm::vec2 samplePosFract = samplePos - glm::vec2(samplePos00); glm::uvec2 samplePos10 = glm::min( samplePos00 + glm::uvec2(1, 0), glm::uvec2(dimensions) - glm::uvec2(1) ); glm::uvec2 samplePos01 = glm::min( samplePos00 + glm::uvec2(0, 1), glm::uvec2(dimensions) - glm::uvec2(1) ); glm::uvec2 samplePos11 = glm::min( samplePos00 + glm::uvec2(1, 1), glm::uvec2(dimensions) - glm::uvec2(1) ); float sample00 = tileTexture->texelAsFloat(samplePos00).x; float sample10 = tileTexture->texelAsFloat(samplePos10).x; float sample01 = tileTexture->texelAsFloat(samplePos01).x; float sample11 = tileTexture->texelAsFloat(samplePos11).x; // In case the texture has NaN or no data values don't use this height map. bool anySampleIsNaN = std::isnan(sample00) || std::isnan(sample01) || std::isnan(sample10) || std::isnan(sample11); bool anySampleIsNoData = sample00 == tileProvider->noDataValueAsFloat() || sample01 == tileProvider->noDataValueAsFloat() || sample10 == tileProvider->noDataValueAsFloat() || sample11 == tileProvider->noDataValueAsFloat(); if (anySampleIsNaN || anySampleIsNoData) { continue; } float sample0 = sample00 * (1.f - samplePosFract.x) + sample10 * samplePosFract.x; float sample1 = sample01 * (1.f - samplePosFract.x) + sample11 * samplePosFract.x; float sample = sample0 * (1.f - samplePosFract.y) + sample1 * samplePosFract.y; // Same as is used in the shader. This is not a perfect solution but // if the sample is actually a no-data-value (min_float) the interpolated // value might not be. Therefore we have a cut-off. Assuming no data value // is smaller than -100000 if (sample > -100000) { // Perform depth transform to get the value in meters height = depthTransform.depthOffset + depthTransform.depthScale * sample; // Make sure that the height value follows the layer settings. // For example if the multiplier is set to a value bigger than one, // the sampled height should be modified as well. height = layer->renderSettings().performLayerSettings(height); } } // Return the result return height; } void ChunkedLodGlobe::notifyShaderRecompilation() { _shadersNeedRecompilation = true; } void ChunkedLodGlobe::recompileShaders() { _renderer->recompileShaders(_owner); _shadersNeedRecompilation = false; } void ChunkedLodGlobe::render(const RenderData& data, RendererTasks&) { stats.startNewRecord(); if (_shadersNeedRecompilation) { _renderer->recompileShaders(_owner); _shadersNeedRecompilation = false; } auto duration = std::chrono::system_clock::now().time_since_epoch(); auto millis = std::chrono::duration_cast(duration).count(); stats.i["time"] = millis; _leftRoot->updateChunkTree(data); _rightRoot->updateChunkTree(data); // Calculate the MVP matrix glm::dmat4 viewTransform = glm::dmat4(data.camera.combinedViewMatrix()); glm::dmat4 vp = glm::dmat4(data.camera.sgctInternal.projectionMatrix()) * viewTransform; glm::dmat4 mvp = vp * _owner.modelTransform(); // Render function auto renderJob = [this, &data, &mvp](const ChunkNode& chunkNode) { stats.i["chunks nodes"]++; const Chunk& chunk = chunkNode.getChunk(); if (chunkNode.isLeaf()) { stats.i["leafs chunk nodes"]++; if (chunk.isVisible()) { stats.i["rendered chunks"]++; _renderer->renderChunk(chunkNode.getChunk(), data); debugRenderChunk(chunk, mvp); } } }; _leftRoot->breadthFirst(renderJob); _rightRoot->breadthFirst(renderJob); //_leftRoot->reverseBreadthFirst(renderJob); //_rightRoot->reverseBreadthFirst(renderJob); auto duration2 = std::chrono::system_clock::now().time_since_epoch(); auto millis2 = std::chrono::duration_cast(duration2).count(); stats.i["chunk globe render time"] = millis2 - millis; } void ChunkedLodGlobe::debugRenderChunk(const Chunk& chunk, const glm::dmat4& mvp) const { if (_owner.debugProperties().showChunkBounds || _owner.debugProperties().showChunkAABB) { const std::vector modelSpaceCorners = chunk.getBoundingPolyhedronCorners(); std::vector clippingSpaceCorners(8); AABB3 screenSpaceBounds; for (size_t i = 0; i < 8; ++i) { const glm::vec4& clippingSpaceCorner = mvp * modelSpaceCorners[i]; clippingSpaceCorners[i] = clippingSpaceCorner; glm::vec3 screenSpaceCorner = glm::vec3((1.0f / clippingSpaceCorner.w) * clippingSpaceCorner); screenSpaceBounds.expand(screenSpaceCorner); } unsigned int colorBits = 1 + chunk.tileIndex().level % 6; glm::vec4 color = glm::vec4(colorBits & 1, colorBits & 2, colorBits & 4, 0.3); if (_owner.debugProperties().showChunkBounds) { DebugRenderer::ref().renderNiceBox(clippingSpaceCorners, color); } if (_owner.debugProperties().showChunkAABB) { auto& screenSpacePoints = DebugRenderer::ref().verticesFor(screenSpaceBounds); DebugRenderer::ref().renderNiceBox(screenSpacePoints, color); } } } void ChunkedLodGlobe::update(const UpdateData& data) { setBoundingSphere(static_cast( _owner.ellipsoid().maximumRadius() * data.modelTransform.scale )); _renderer->update(); } } // namespace openspace::globebrowsing