/**************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2018 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { constexpr const char* ProgramName = "RenderableSatellites"; constexpr const char* _loggerCat = "Satellites"; static const openspace::properties::Property::PropertyInfo PathInfo = { "Path", "Path", "The file path to the TLE file to read" }; static const openspace::properties::Property::PropertyInfo SegmentsInfo = { "Segments", "Segments", "The number of segments to use for each orbit ellipse" }; constexpr openspace::properties::Property::PropertyInfo LineWidthInfo = { "LineWidth", "Line Width", "This value specifies the line width of the trail if the selected rendering " "method includes lines. If the rendering mode is set to Points, this value is " "ignored." }; constexpr openspace::properties::Property::PropertyInfo LineColorInfo = { "Color", "Color", "This value determines the RGB main color for the lines and points of the trail." }; constexpr const char* KeyFile = "Path"; constexpr const char* KeyLineNum = "LineNumber"; } namespace openspace { // The list of leap years only goes until 2056 as we need to touch this file then // again anyway ;) const std::vector LeapYears = { 1956, 1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040, 2044, 2048, 2052, 2056 }; // Count the number of full days since the beginning of 2000 to the beginning of // the parameter 'year' int countDays(int year) { // Find the position of the current year in the vector, the difference // between its position and the position of 2000 (for J2000) gives the // number of leap years constexpr const int Epoch = 2000; constexpr const int DaysRegularYear = 365; constexpr const int DaysLeapYear = 366; if (year == Epoch) { return 0; } // Get the position of the most recent leap year const auto lb = std::lower_bound(LeapYears.begin(), LeapYears.end(), year); // Get the position of the epoch const auto y2000 = std::find(LeapYears.begin(), LeapYears.end(), Epoch); // The distance between the two iterators gives us the number of leap years const int nLeapYears = static_cast(std::abs(std::distance(y2000, lb))); const int nYears = std::abs(year - Epoch); const int nRegularYears = nYears - nLeapYears; // Get the total number of days as the sum of leap years + non leap years const int result = nRegularYears * DaysRegularYear + nLeapYears * DaysLeapYear; return result; } // Returns the number of leap seconds that lie between the {year, dayOfYear} // time point and { 2000, 1 } int countLeapSeconds(int year, int dayOfYear) { // Find the position of the current year in the vector; its position in // the vector gives the number of leap seconds struct LeapSecond { int year; int dayOfYear; bool operator<(const LeapSecond& rhs) const { return std::tie(year, dayOfYear) < std::tie(rhs.year, rhs.dayOfYear); } }; const LeapSecond Epoch = { 2000, 1 }; // List taken from: https://www.ietf.org/timezones/data/leap-seconds.list static const std::vector LeapSeconds = { { 1972, 1 }, { 1972, 183 }, { 1973, 1 }, { 1974, 1 }, { 1975, 1 }, { 1976, 1 }, { 1977, 1 }, { 1978, 1 }, { 1979, 1 }, { 1980, 1 }, { 1981, 182 }, { 1982, 182 }, { 1983, 182 }, { 1985, 182 }, { 1988, 1 }, { 1990, 1 }, { 1991, 1 }, { 1992, 183 }, { 1993, 182 }, { 1994, 182 }, { 1996, 1 }, { 1997, 182 }, { 1999, 1 }, { 2006, 1 }, { 2009, 1 }, { 2012, 183 }, { 2015, 182 }, { 2017, 1 } }; // Get the position of the last leap second before the desired date LeapSecond date { year, dayOfYear }; const auto it = std::lower_bound(LeapSeconds.begin(), LeapSeconds.end(), date); // Get the position of the Epoch const auto y2000 = std::lower_bound( LeapSeconds.begin(), LeapSeconds.end(), Epoch ); // The distance between the two iterators gives us the number of leap years const int nLeapSeconds = static_cast(std::abs(std::distance(y2000, it))); return nLeapSeconds; } double calculateSemiMajorAxis(double meanMotion) { constexpr const double GravitationalConstant = 6.6740831e-11; constexpr const double MassEarth = 5.9721986e24; constexpr const double muEarth = GravitationalConstant * MassEarth; // Use Kepler's 3rd law to calculate semimajor axis // a^3 / P^2 = mu / (2pi)^2 // <=> a = ((mu * P^2) / (2pi^2))^(1/3) // with a = semimajor axis // P = period in seconds // mu = G*M_earth double period = std::chrono::seconds(std::chrono::hours(24)).count() / meanMotion; const double pisq = glm::pi() * glm::pi(); double semiMajorAxis = pow((muEarth * period*period) / (4 * pisq), 1.0 / 3.0); // We need the semi major axis in km instead of m return semiMajorAxis / 1000.0; } double epochFromSubstring(const std::string& epochString) { // The epochString is in the form: // YYDDD.DDDDDDDD // With YY being the last two years of the launch epoch, the first DDD the day // of the year and the remaning a fractional part of the day // The main overview of this function: // 1. Reconstruct the full year from the YY part // 2. Calculate the number of seconds since the beginning of the year // 2.a Get the number of full days since the beginning of the year // 2.b If the year is a leap year, modify the number of days // 3. Convert the number of days to a number of seconds // 4. Get the number of leap seconds since January 1st, 2000 and remove them // 5. Adjust for the fact the epoch starts on 1st Januaray at 12:00:00, not // midnight // According to https://celestrak.com/columns/v04n03/ // Apparently, US Space Command sees no need to change the two-line element // set format yet since no artificial earth satellites existed prior to 1957. // By their reasoning, two-digit years from 57-99 correspond to 1957-1999 and // those from 00-56 correspond to 2000-2056. We'll see each other again in 2057! // 1. Get the full year std::string yearPrefix = [y = epochString.substr(0, 2)](){ int year = std::atoi(y.c_str()); return year >= 57 ? "19" : "20"; }(); const int year = std::atoi((yearPrefix + epochString.substr(0, 2)).c_str()); const int daysSince2000 = countDays(year); // 2. // 2.a double daysInYear = std::atof(epochString.substr(2).c_str()); // 2.b const bool isInLeapYear = std::find( LeapYears.begin(), LeapYears.end(), year ) != LeapYears.end(); if (isInLeapYear && daysInYear >= 60) { // We are in a leap year, so we have an effective day more if we are // beyond the end of february (= 31+29 days) --daysInYear; } // 3 using namespace std::chrono; const int SecondsPerDay = static_cast(seconds(hours(24)).count()); //Need to subtract 1 from daysInYear since it is not a zero-based count const double nSecondsSince2000 = (daysSince2000 + daysInYear - 1) * SecondsPerDay; // 4 // We need to remove additional leap seconds past 2000 and add them prior to // 2000 to sync up the time zones const double nLeapSecondsOffset = -countLeapSeconds( year, static_cast(std::floor(daysInYear)) ); // 5 const double nSecondsEpochOffset = static_cast( seconds(hours(12)).count() ); // Combine all of the values const double epoch = nSecondsSince2000 + nLeapSecondsOffset - nSecondsEpochOffset; return epoch; } documentation::Documentation RenderableSatellites::Documentation() { using namespace documentation; return { "RenderableSatellites", "space_renderable_satellites", { { SegmentsInfo.identifier, new DoubleVerifier, Optional::No, SegmentsInfo.description }, { PathInfo.identifier, new StringVerifier, Optional::No, PathInfo.description }, { LineWidthInfo.identifier, new DoubleVerifier, Optional::Yes, LineWidthInfo.description }, { LineColorInfo.identifier, new DoubleVector3Verifier, Optional::No, LineColorInfo.description } } }; } RenderableSatellites::RenderableSatellites(const ghoul::Dictionary& dictionary) : Renderable(dictionary) , _path(PathInfo) , _nSegments(SegmentsInfo, 120, 4, 1024) { documentation::testSpecificationAndThrow( Documentation(), dictionary, "RenderableSatellites" ); _path = dictionary.value(PathInfo.identifier); _nSegments = static_cast(dictionary.value(SegmentsInfo.identifier)); if (dictionary.hasKeyAndValue(LineColorInfo.identifier)) { _appearance.lineColor = dictionary.value(LineColorInfo.identifier); } auto reinitializeTrailBuffers = [this]() { initializeGL(); }; _path.onChange(reinitializeTrailBuffers); _nSegments.onChange(reinitializeTrailBuffers); addPropertySubOwner(_appearance); addProperty(_path); addProperty(_nSegments); } void RenderableSatellites::readTLEFile(const std::string& filename) { if (!FileSys.fileExists(filename)) { throw ghoul::RuntimeError(fmt::format( "Satellite TLE file {} does not exist.", filename )); } std::ifstream file; file.exceptions(std::ifstream::failbit | std::ifstream::badbit); file.open(filename); std::streamoff numberOfLines = std::count(std::istreambuf_iterator(file), std::istreambuf_iterator(), '\n' ); file.seekg(std::ios_base::beg); // reset iterator to beginning of file // 3 because a TLE has 3 lines per element/ object. std::streamoff numberOfObjects = numberOfLines / 3; std::string line = "-"; for (std::streamoff i = 0; i < numberOfObjects; i++) { std::getline(file, line); // get rid of title KeplerParameters keplerElements; std::getline(file, line); if (line[0] == '1') { // First line // Field Columns Content // 1 01-01 Line number // 2 03-07 Satellite number // 3 08-08 Classification (U = Unclassified) // 4 10-11 International Designator (Last two digits of launch year) // 5 12-14 International Designator (Launch number of the year) // 6 15-17 International Designator(piece of the launch) A // 7 19-20 Epoch Year(last two digits of year) // 8 21-32 Epoch(day of the year and fractional portion of the day) // 9 34-43 First Time Derivative of the Mean Motion divided by two // 10 45-52 Second Time Derivative of Mean Motion divided by six // 11 54-61 BSTAR drag term(decimal point assumed)[10] - 11606 - 4 // 12 63-63 The "Ephemeris type" // 13 65-68 Element set number.Incremented when a new TLE is generated // 14 69-69 Checksum (modulo 10) keplerElements.epoch = epochFromSubstring(line.substr(18, 14)); } else { throw ghoul::RuntimeError(fmt::format( "File {} entry {} does not have '1' header", filename, i + 1 )); } std::getline(file, line); if (line[0] == '2') { // Second line // Field Columns Content // 1 01-01 Line number // 2 03-07 Satellite number // 3 09-16 Inclination (degrees) // 4 18-25 Right ascension of the ascending node (degrees) // 5 27-33 Eccentricity (decimal point assumed) // 6 35-42 Argument of perigee (degrees) // 7 44-51 Mean Anomaly (degrees) // 8 53-63 Mean Motion (revolutions per day) // 9 64-68 Revolution number at epoch (revolutions) // 10 69-69 Checksum (modulo 10) std::stringstream stream; stream.exceptions(std::ios::failbit); // Get inclination stream.str(line.substr(8, 8)); stream >> keplerElements.inclination; stream.clear(); // Get Right ascension of the ascending node stream.str(line.substr(17, 8)); stream >> keplerElements.ascendingNode; stream.clear(); // Get Eccentricity stream.str("0." + line.substr(26, 7)); stream >> keplerElements.eccentricity; stream.clear(); // Get argument of periapsis stream.str(line.substr(34, 8)); stream >> keplerElements.argumentOfPeriapsis; stream.clear(); // Get mean anomaly stream.str(line.substr(43, 8)); stream >> keplerElements.meanAnomaly; stream.clear(); // Get mean motion stream.str(line.substr(52, 11)); stream >> keplerElements.meanMotion; } else { throw ghoul::RuntimeError(fmt::format( "File {} entry {} does not have '2' header", filename, i + 1 )); } // Calculate the semi major axis based on the mean motion using kepler's laws keplerElements.semiMajorAxis = calculateSemiMajorAxis(keplerElements.meanMotion); using namespace std::chrono; double period = seconds(hours(24)).count() / keplerElements.meanMotion; keplerElements.period = period; _TLEData.push_back(keplerElements); } file.close(); } void RenderableSatellites::initializeGL() { glGenVertexArrays(1, &_vertexArray); glGenBuffers(1, &_vertexBuffer); _programObject = SpaceModule::ProgramObjectManager.request( ProgramName, []() -> std::unique_ptr { return global::renderEngine.buildRenderProgram( ProgramName, absPath("${MODULE_SPACE}/shaders/debrisViz_vs.glsl"), absPath("${MODULE_SPACE}/shaders/debrisViz_fs.glsl") ); } ); _uniformCache.modelView = _programObject->uniformLocation("modelViewTransform"); _uniformCache.projection = _programObject->uniformLocation("projectionTransform"); _uniformCache.lineFade = _programObject->uniformLocation("lineFade"); _uniformCache.inGameTime = _programObject->uniformLocation("inGameTime"); _uniformCache.color = _programObject->uniformLocation("color"); _uniformCache.opacity = _programObject->uniformLocation("opacity"); updateBuffers(); setRenderBin(Renderable::RenderBin::Overlay); } void RenderableSatellites::deinitializeGL() { glDeleteBuffers(1, &_vertexBuffer); glDeleteVertexArrays(1, &_vertexArray); SpaceModule::ProgramObjectManager.release( ProgramName, [](ghoul::opengl::ProgramObject* p) { global::renderEngine.removeRenderProgram(p); } ); _programObject = nullptr; } bool RenderableSatellites::isReady() const { return _programObject != nullptr; } void RenderableSatellites::render(const RenderData& data, RendererTasks&) { if (_TLEData.empty()) return; _programObject->activate(); _programObject->setUniform(_uniformCache.opacity, _opacity); _programObject->setUniform(_uniformCache.inGameTime, data.time.j2000Seconds()); glm::dmat4 modelTransform = glm::translate(glm::dmat4(1.0), data.modelTransform.translation) * glm::dmat4(data.modelTransform.rotation) * glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale)); _programObject->setUniform( _uniformCache.modelView, data.camera.combinedViewMatrix() * modelTransform ); _programObject->setUniform(_uniformCache.projection, data.camera.projectionMatrix()); _programObject->setUniform(_uniformCache.color, _appearance.lineColor); _programObject->setUniform(_uniformCache.lineFade, _appearance.lineFade); glLineWidth(_appearance.lineWidth); const size_t nrOrbits = _TLEData.size(); gl::GLint vertices = 0; //glDepthMask(false); //glBlendFunc(GL_SRC_ALPHA, GL_ONE) glBindVertexArray(_vertexArray); for (size_t i = 0; i < nrOrbits; ++i) { glDrawArrays(GL_LINE_STRIP, vertices, _nSegments + 1); vertices = vertices + _nSegments + 1; } glBindVertexArray(0); _programObject->deactivate(); } void RenderableSatellites::updateBuffers() { readTLEFile(_path); const size_t nVerticesPerOrbit = _nSegments + 1; _vertexBufferData.resize(_TLEData.size() * nVerticesPerOrbit); size_t orbitindex = 0; for (const auto& orbit : _TLEData) { _keplerTranslator.setKeplerElements( orbit.eccentricity, orbit.semiMajorAxis, orbit.inclination, orbit.ascendingNode, orbit.argumentOfPeriapsis, orbit.meanAnomaly, orbit.period, orbit.epoch ); for (size_t i=0 ; i < nVerticesPerOrbit; ++i) { size_t index = orbitindex * nVerticesPerOrbit + i; double timeOffset = orbit.period * static_cast(i)/ static_cast(_nSegments); glm::dvec3 position = _keplerTranslator.position({ {}, Time(timeOffset + orbit.epoch), Time(0.0), false }); double positionX = position.x; double positionY = position.y; double positionZ = position.z; _vertexBufferData[index].x = static_cast(positionX); _vertexBufferData[index].y = static_cast(positionY); _vertexBufferData[index].z = static_cast(positionZ); _vertexBufferData[index].time = static_cast(timeOffset); _vertexBufferData[index].epoch = orbit.epoch; _vertexBufferData[index].period = orbit.period; } ++orbitindex; } glBindVertexArray(_vertexArray); glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer); glBufferData( GL_ARRAY_BUFFER, _vertexBufferData.size() * sizeof(TrailVBOLayout), _vertexBufferData.data(), GL_STATIC_DRAW ); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(TrailVBOLayout), (GLvoid*)0); // stride : 4*sizeof(GL_FLOAT) + 2*sizeof(GL_DOUBLE) glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_DOUBLE, GL_FALSE, sizeof(TrailVBOLayout), (GLvoid*)(4*sizeof(GL_FLOAT)) ); glBindVertexArray(0); } }