/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include // open space includes #include #include #include #include #include // ghoul includes #include #define _USE_MATH_DEFINES #include #include #include namespace { const std::string _loggerCat = "ChunkLodGlobe"; } namespace openspace { const ChunkIndex ChunkedLodGlobe::LEFT_HEMISPHERE_INDEX = ChunkIndex(0, 0, 1); const ChunkIndex ChunkedLodGlobe::RIGHT_HEMISPHERE_INDEX = ChunkIndex(1, 0, 1); const GeodeticPatch ChunkedLodGlobe::COVERAGE = GeodeticPatch(0, 0, 90, 180); ChunkedLodGlobe::ChunkedLodGlobe( const Ellipsoid& ellipsoid, size_t segmentsPerPatch, std::shared_ptr tileProviderManager) : _ellipsoid(ellipsoid) , _leftRoot(std::make_unique(Chunk(this, LEFT_HEMISPHERE_INDEX))) , _rightRoot(std::make_unique(Chunk(this, RIGHT_HEMISPHERE_INDEX))) , minSplitDepth(2) , maxSplitDepth(22) , _savedCamera(nullptr) , _tileProviderManager(tileProviderManager) , stats(StatsCollector(absPath("test_stats"), 1, StatsCollector::Enabled::No)) { auto geometry = std::make_shared( (unsigned int) segmentsPerPatch, (unsigned int) segmentsPerPatch, TriangleSoup::Positions::No, TriangleSoup::TextureCoordinates::Yes, TriangleSoup::Normals::No); _chunkCullers.push_back(std::make_unique()); _chunkCullers.push_back(std::make_unique(AABB3(vec3(-1, -1, 0), vec3(1, 1, 1e35)))); _chunkEvaluatorByAvailableTiles = std::make_unique(); _chunkEvaluatorByProjectedArea = std::make_unique(); _chunkEvaluatorByDistance = std::make_unique(); _renderer = std::make_unique(geometry, tileProviderManager); } ChunkedLodGlobe::~ChunkedLodGlobe() { } bool ChunkedLodGlobe::initialize() { return isReady(); } bool ChunkedLodGlobe::deinitialize() { return true; } bool ChunkedLodGlobe::isReady() const { bool ready = true; return ready; } std::shared_ptr ChunkedLodGlobe::getTileProviderManager() const { return _tileProviderManager; } bool ChunkedLodGlobe::testIfCullable(const Chunk& chunk, const RenderData& renderData) const { if (debugOptions.doHorizonCulling && _chunkCullers[0]->isCullable(chunk, renderData)) { return true; } if (debugOptions.doFrustumCulling && _chunkCullers[1]->isCullable(chunk, renderData)) { return true; } return false; } const ChunkNode& ChunkedLodGlobe::findChunkNode(const Geodetic2 p) const { ghoul_assert(COVERAGE.contains(p), "Point must be in lat [-90, 90] and lon [-180, 180]"); return p.lon < COVERAGE.center().lon ? _leftRoot->find(p) : _rightRoot->find(p); } ChunkNode& ChunkedLodGlobe::findChunkNode(const Geodetic2 p) { ghoul_assert(COVERAGE.contains(p), "Point must be in lat [-90, 90] and lon [-180, 180]"); return p.lon < COVERAGE.center().lon ? _leftRoot->find(p) : _rightRoot->find(p); } int ChunkedLodGlobe::getDesiredLevel(const Chunk& chunk, const RenderData& renderData) const { int desiredLevel = 0; if (debugOptions.levelByProjAreaElseDistance) { desiredLevel = _chunkEvaluatorByProjectedArea->getDesiredLevel(chunk, renderData); } else { desiredLevel = _chunkEvaluatorByDistance->getDesiredLevel(chunk, renderData); } int desiredLevelByAvailableData = _chunkEvaluatorByAvailableTiles->getDesiredLevel(chunk, renderData); if (desiredLevelByAvailableData != ChunkLevelEvaluator::UNKNOWN_DESIRED_LEVEL) { desiredLevel = min(desiredLevel, desiredLevelByAvailableData); } desiredLevel = glm::clamp(desiredLevel, minSplitDepth, maxSplitDepth); return desiredLevel; } void ChunkedLodGlobe::render(const RenderData& data){ stats.startNewRecord(); int j2000s = Time::now().j2000Seconds(); auto duration = std::chrono::system_clock::now().time_since_epoch(); auto millis = std::chrono::duration_cast(duration).count(); stats.i["time"] = millis; minDistToCamera = INFINITY; _leftRoot->updateChunkTree(data); _rightRoot->updateChunkTree(data); // Calculate the MVP matrix dmat4 viewTransform = dmat4(data.camera.combinedViewMatrix()); dmat4 vp = dmat4(data.camera.projectionMatrix()) * viewTransform; dmat4 mvp = vp * _modelTransform; // Render function std::function renderJob = [this, &data, &mvp](const ChunkNode& chunkNode) { stats.i["chunks"]++; const Chunk& chunk = chunkNode.getChunk(); if (chunkNode.isLeaf()){ stats.i["chunks leafs"]++; if (chunk.isVisible()) { stats.i["rendered chunks"]++; double t0 = Time::now().j2000Seconds(); _renderer->renderChunk(chunkNode.getChunk(), data); debugRenderChunk(chunk, mvp); } } }; _leftRoot->reverseBreadthFirst(renderJob); _rightRoot->reverseBreadthFirst(renderJob); if (_savedCamera != nullptr) { DebugRenderer::ref().renderCameraFrustum(data, *_savedCamera); } //LDEBUG("min distnace to camera: " << minDistToCamera); Vec3 cameraPos = data.camera.position().dvec3(); //LDEBUG("cam pos x: " << cameraPos.x << " y: " << cameraPos.y << " z: " << cameraPos.z); //LDEBUG("ChunkNode count: " << ChunkNode::chunkNodeCount); //LDEBUG("RenderedPatches count: " << ChunkNode::renderedChunks); //LDEBUG(ChunkNode::renderedChunks << " / " << ChunkNode::chunkNodeCount << " chunks rendered"); } void ChunkedLodGlobe::debugRenderChunk(const Chunk& chunk, const glm::dmat4& mvp) const { if (debugOptions.showChunkBounds || debugOptions.showChunkAABB) { const std::vector modelSpaceCorners = chunk.getBoundingPolyhedronCorners(); std::vector clippingSpaceCorners(8); AABB3 screenSpaceBounds; for (size_t i = 0; i < 8; i++) { const vec4& clippingSpaceCorner = mvp * modelSpaceCorners[i]; clippingSpaceCorners[i] = clippingSpaceCorner; vec3 screenSpaceCorner = (1.0f / clippingSpaceCorner.w) * clippingSpaceCorner.xyz(); screenSpaceBounds.expand(screenSpaceCorner); } unsigned int colorBits = 1 + chunk.index().level % 6; vec4 color = vec4(colorBits & 1, colorBits & 2, colorBits & 4, 0.3); if (debugOptions.showChunkBounds) { DebugRenderer::ref().renderNiceBox(clippingSpaceCorners, color); } if (debugOptions.showChunkAABB) { auto& screenSpacePoints = DebugRenderer::ref().verticesFor(screenSpaceBounds); DebugRenderer::ref().renderNiceBox(screenSpacePoints, color); } } } void ChunkedLodGlobe::update(const UpdateData& data) { glm::dmat4 translation = glm::translate(glm::dmat4(1.0), data.modelTransform.translation); glm::dmat4 rotation = glm::dmat4(data.modelTransform.rotation); glm::dmat4 scaling = glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale, data.modelTransform.scale, data.modelTransform.scale)); _modelTransform = translation * rotation * scaling; _inverseModelTransform = glm::inverse(_modelTransform); _renderer->update(); } const glm::dmat4& ChunkedLodGlobe::modelTransform() { return _modelTransform; } const glm::dmat4& ChunkedLodGlobe::inverseModelTransform() { return _inverseModelTransform; } const Ellipsoid& ChunkedLodGlobe::ellipsoid() const { return _ellipsoid; } } // namespace openspace