/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include namespace { const std::string _loggerCat = "FrustrumCuller"; } namespace openspace { ////////////////////////////////////////////////////////////////////////////////////// // FRUSTUM CULLER // ////////////////////////////////////////////////////////////////////////////////////// FrustumCuller::FrustumCuller(const AABB3 viewFrustum) : _viewFrustum(viewFrustum){ } FrustumCuller::~FrustumCuller() { } bool FrustumCuller::isCullable(const Chunk& chunk, const RenderData& data) { // Calculate the MVP matrix dmat4 modelTransform = chunk.owner()->modelTransform(); dmat4 viewTransform = dmat4(data.camera.combinedViewMatrix()); dmat4 modelViewProjectionTransform = dmat4(data.camera.projectionMatrix()) * viewTransform * modelTransform; const std::vector& corners = chunk.getBoundingPolyhedronCorners(); // Create a bounding box that fits the patch corners AABB3 bounds; // in screen space std::vector clippingSpaceCorners(8); for (size_t i = 0; i < 8; i++) { dvec4 cornerClippingSpace = modelViewProjectionTransform * corners[i]; clippingSpaceCorners[i] = cornerClippingSpace; dvec3 cornerScreenSpace = (1.0f / glm::abs(cornerClippingSpace.w)) * cornerClippingSpace.xyz(); bounds.expand(cornerScreenSpace); } return !_viewFrustum.intersects(bounds); } ////////////////////////////////////////////////////////////////////////////////////// // HORIZON CULLER // ////////////////////////////////////////////////////////////////////////////////////// HorizonCuller::HorizonCuller() { } HorizonCuller::~HorizonCuller() { } bool HorizonCuller::isCullable(const Chunk& chunk, const RenderData& data) { //return !isVisible(data, chunk.surfacePatch(), chunk.owner()->ellipsoid(), chunk.owner()->chunkHeight); // Calculations are done in the reference frame of the globe. Hence, the camera // position needs to be transformed with the inverse model matrix glm::dmat4 inverseModelTransform = chunk.owner()->inverseModelTransform(); const Ellipsoid& ellipsoid = chunk.owner()->ellipsoid(); const GeodeticPatch& patch = chunk.surfacePatch(); float maxHeight = chunk.getBoundingHeights().max; Vec3 globePosition = glm::dvec3(0,0,0); // In model space it is 0 Scalar minimumGlobeRadius = ellipsoid.minimumRadius(); Vec3 cameraPosition = glm::dvec3(inverseModelTransform * glm::dvec4(data.camera.positionVec3(), 1)); Vec3 globeToCamera = cameraPosition; Geodetic2 cameraPositionOnGlobe = ellipsoid.cartesianToGeodetic2(globeToCamera); Geodetic2 closestPatchPoint = patch.closestPoint(cameraPositionOnGlobe); const Vec3& objectPosition = ellipsoid.cartesianSurfacePosition(closestPatchPoint); return isCullable(cameraPosition, globePosition, objectPosition, maxHeight, minimumGlobeRadius); } bool HorizonCuller::isCullable( const Vec3& cameraPosition, const Vec3& globePosition, const Vec3& objectPosition, Scalar objectBoundingSphereRadius, Scalar minimumGlobeRadius) { Scalar distanceToHorizon = sqrt(pow(length(cameraPosition - globePosition), 2) - pow(minimumGlobeRadius, 2)); Scalar minimumAllowedDistanceToObjectFromHorizon = sqrt( pow(length(objectPosition - globePosition), 2) - pow(minimumGlobeRadius - objectBoundingSphereRadius, 2)); // Minimum allowed for the object to be occluded Scalar minimumAllowedDistanceToObjectSquared = pow(distanceToHorizon + minimumAllowedDistanceToObjectFromHorizon, 2) + pow(objectBoundingSphereRadius, 2); Scalar distanceToObjectSquared = pow(length(objectPosition - cameraPosition), 2); return distanceToObjectSquared > minimumAllowedDistanceToObjectSquared; } } // namespace openspace