/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2015 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #ifndef __RenderableFov_H__ #define __RenderableFov_H__ // open space includes #include #include #include // ghoul includes #include #include //#include #include namespace openspace { class RenderableFov : public Renderable{ public: RenderableFov(const ghoul::Dictionary& dictionary); ~RenderableFov(); bool initialize() override; bool deinitialize() override; bool isReady() const override; void render(const RenderData& data) override; void update(const UpdateData& data) override; private: properties::FloatProperty _lineWidth; ghoul::opengl::ProgramObject* _programObject; ghoul::opengl::Texture* _texture; openspace::SceneGraphNode* _targetNode; void loadTexture(); void allocateData(); void insertPoint(std::vector& arr, psc p, glm::vec4 c); void fovProjection(bool H[], std::vector bounds); psc orthogonalProjection(glm::dvec3 camvec); psc checkForIntercept(glm::dvec3 ray); psc pscInterpolate(psc p0, psc p1, float t); psc sphericalInterpolate(glm::dvec3 p0, glm::dvec3 p1, float t); glm::dvec3 interpolate(glm::dvec3 p0, glm::dvec3 p1, float t); glm::dvec3 bisection(glm::dvec3 p1, glm::dvec3 p2, double tolerance); void computeColors(); // instance variables int _nrInserted = 0; int _isteps; bool _rebuild = false; bool _interceptTag[5]; bool _withinFOV; psc _projectionBounds[4]; psc _interceptVector; // spice std::string _spacecraft; std::string _observer; std::string _frame; std::string _instrumentID; std::string _method; std::string _aberrationCorrection; std::string _fovTarget; std::vector _potentialTargets; glm::dvec3 ipoint, ivec; glm::dvec3 _previousHalf; glm::vec3 _c; double _r, _g, _b; // GPU stuff GLuint _vaoID[2] ; GLuint _vboID[2] ; GLuint _iboID[2]; GLenum _mode; unsigned int _isize[2]; unsigned int _vsize[2]; unsigned int _vtotal[2]; unsigned int _stride[2]; std::vector _varray1; std::vector _varray2; int* _iarray1[2]; void updateData(); void sendToGPU(); glm::dmat3 _stateMatrix; // time double _time = 0; double _oldTime = 0; // capturetime double _timeInterval; double _nextCaptureTime; }; } #endif // Scrap stuff i need to keep for now (michal) /* // idk how we will compute the aberrated state. double RenderableFov::computeTargetLocalTime(PowerScaledScalar d){ double c = 299792456.075; // m/s double dt = ( (d[0]*pow(10, d[1])) / c ); double t_local = _time - dt*86400; std::string localTime; std::string currentTime; openspace::SpiceManager::ref().getDateFromET(t_local, localTime); openspace::SpiceManager::ref().getDateFromET(_time , currentTime); std::cout << "time at jupiter : " << localTime << "\time at NH" << currentTime << std::endl; return t_local; }*/ /* psc RenderableFov::sphericalInterpolate(glm::dvec3 p0, glm::dvec3 p1, float t){ double targetEt, lt; glm::dvec3 ip, iv; psc targetPos; SpiceManager::ref().getTargetPosition("JUPITER", _spacecraft, _frame, _aberrationCorrection, _time, targetPos, lt); openspace::SpiceManager::ref().getSurfaceIntercept(_fovTarget, _spacecraft, _instrumentID, _frame, _method, _aberrationCorrection, _time, targetEt, p0, ip, iv); psc psc0 = PowerScaledCoordinate::CreatePowerScaledCoordinate(iv[0], iv[1], iv[2]); openspace::SpiceManager::ref().getSurfaceIntercept(_fovTarget, _spacecraft, _instrumentID, _frame, _method, _aberrationCorrection, _time, targetEt, p1, ip, iv); psc psc1 = PowerScaledCoordinate::CreatePowerScaledCoordinate(iv[0], iv[1], iv[2]); psc0[3] += 3; psc1[3] += 3; psc0 -= targetPos; psc1 -= targetPos; double angle = psc0.angle(psc1); std::cout << angle << std::endl; double sin_a = sin(angle); // opt double l[2] = { sin((1.f - t)*angle) / sin_a, sin((t)*angle) / sin_a }; std::cout << l[0] << " " << l[1] << std::endl; float s = ((t-1)*psc0[3] + (t)*psc1[3]); float x = (l[0]*psc0[0] + l[1]*psc1[0]); float y = (l[0]*psc0[1] + l[1]*psc1[1]); float z = (l[0]*psc0[2] + l[1]*psc1[2]); psc interpolated = PowerScaledCoordinate::PowerScaledCoordinate(x, y, z, 10); return interpolated; } */