// /***************************************************************************************** // * * // * OpenSpace * // * * // * Copyright (c) 2014-2016 * // * * // * Permission is hereby granted, free of charge, to any person obtaining a copy of this * // * software and associated documentation files (the "Software"), to deal in the Software * // * without restriction, including without limitation the rights to use, copy, modify, * // * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * // * permit persons to whom the Software is furnished to do so, subject to the following * // * conditions: * // * * // * The above copyright notice and this permission notice shall be included in all copies * // * or substantial portions of the Software. * // * * // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * // * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * // * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * // * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * // * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * // * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * // ****************************************************************************************/ #include //#include #include #include #include #include #include #include #include #include #include namespace { const std::string _loggerCat = "DataPlane"; } namespace openspace { DataPlane::DataPlane(const ghoul::Dictionary& dictionary) :CygnetPlane(dictionary) ,_dataOptions("dataOptions", "Data Options") ,_normValues("normValues", "Normalize Values", glm::vec2(1.0, 1.0), glm::vec2(0), glm::vec2(5.0)) ,_useLog("useLog","Use Logarithm Norm", false) ,_useHistogram("useHistogram","Use Histogram Equalization", true) ,_useRGB("useRGB","Use RGB Channels", false) // ,_topColor("topColor", "Top Color", glm::vec4(1,0,0,1), glm::vec4(0), glm::vec4(1)) // ,_midColor("midColor", "Mid Color", glm::vec4(0,0,0,0), glm::vec4(0), glm::vec4(1)) // ,_botColor("botColor", "Bot Color", glm::vec4(0,0,1,1), glm::vec4(0), glm::vec4(1)) // ,_tfValues("tfValues", "TF Values", glm::vec2(0.5,0.1), glm::vec2(0), glm::vec2(1)) // ,_colorbar(nullptr) { _id = id(); std::string name; dictionary.getValue("Name", name); setName(name); addProperty(_useLog); addProperty(_useHistogram); addProperty(_useRGB); addProperty(_normValues); addProperty(_dataOptions); //addProperty(_midLevel); // addProperty(_topColor); // addProperty(_midColor); // addProperty(_botColor); //addProperty(_tfValues); registerProperties(); OsEng.gui()._iSWAproperty.registerProperty(&_useLog); OsEng.gui()._iSWAproperty.registerProperty(&_useHistogram); OsEng.gui()._iSWAproperty.registerProperty(&_useRGB); OsEng.gui()._iSWAproperty.registerProperty(&_normValues); OsEng.gui()._iSWAproperty.registerProperty(&_dataOptions); // OsEng.gui()._iSWAproperty.registerProperty(&_topColor); // OsEng.gui()._iSWAproperty.registerProperty(&_midColor); // OsEng.gui()._iSWAproperty.registerProperty(&_botColor); // OsEng.gui()._iSWAproperty.registerProperty(&_tfValues); _normValues.onChange([this](){loadTexture();}); _useLog.onChange([this](){loadTexture();}); _useHistogram.onChange([this](){loadTexture();}); _dataOptions.onChange([this](){ if( _useRGB.value() && (_dataOptions.value().size() > 3)){ LWARNING("More than 3 values, using only the red channel."); } loadTexture(); }); _useRGB.onChange([this](){ if( _useRGB.value() && (_dataOptions.value().size() > 3)){ LWARNING("More than 3 values, using only the red channel."); } loadTexture(); }); } DataPlane::~DataPlane(){} bool DataPlane::initialize(){ initializeTime(); createPlane(); if (_shader == nullptr) { // DatePlane Program RenderEngine& renderEngine = OsEng.renderEngine(); _shader = renderEngine.buildRenderProgram("PlaneProgram", "${MODULE_ISWA}/shaders/dataplane_vs.glsl", "${MODULE_ISWA}/shaders/dataplane_fs.glsl" ); if (!_shader) return false; } updateTexture(); // std::cout << "Creating Colorbar" << std::endl; // _colorbar = std::make_shared(); // if(_colorbar){ // _colorbar->initialize(); // } return isReady(); } bool DataPlane::deinitialize(){ unregisterProperties(); destroyPlane(); destroyShader(); _texture = nullptr; _memorybuffer = ""; // _colorbar->deinitialize(); // _colorbar = nullptr; return true; } // void DataPlane::render(const RenderData& data){} //moved to CygnetPlane // void DataPLane::update(const UpdateData& data){} //moved to CygnetPlane bool DataPlane::loadTexture() { float* values = readData(); if(!values) return false; if (!_texture) { std::unique_ptr texture = std::make_unique( values, _dimensions, ghoul::opengl::Texture::Format::RGB, GL_RGB, GL_FLOAT, ghoul::opengl::Texture::FilterMode::Linear, ghoul::opengl::Texture::WrappingMode::ClampToEdge ); if(texture){ texture->uploadTexture(); texture->setFilter(ghoul::opengl::Texture::FilterMode::Linear); _texture = std::move(texture); } }else{ _texture->setPixelData(values); _texture->uploadTexture(); } return true; } bool DataPlane::updateTexture(){ if(_futureObject) return false; _memorybuffer = ""; std::shared_ptr future = ISWAManager::ref().downloadDataToMemory(_data->id, _memorybuffer); if(future){ _futureObject = future; return true; } return false; } void DataPlane::readHeader(){ if(!_memorybuffer.empty()){ std::stringstream memorystream(_memorybuffer); std::string line; int numOptions = 0; while(getline(memorystream,line)){ if(line.find("#") == 0){ if(line.find("# Output data:") == 0){ line = line.substr(26); std::stringstream ss(line); std::string token; getline(ss, token, 'x'); int x = std::stoi(token); getline(ss, token, '='); int y = std::stoi(token); _dimensions = glm::size3_t(x, y, 1); getline(memorystream, line); line = line.substr(1); ss = std::stringstream(line); std::string option; while(ss >> option){ if(option != "x" && option != "y" && option != "z"){ _dataOptions.addOption({numOptions, name()+"_"+option}); numOptions++; } } std::vector v(1,0); _dataOptions.setValue(v); } }else{ break; } } }else{ LWARNING("Noting in memory buffer, are you connected to the information super highway?"); } } float* DataPlane::readData(){ if(!_memorybuffer.empty()){ if(!_dataOptions.options().size()) // load options for value selection readHeader(); std::stringstream memorystream(_memorybuffer); std::string line; std::vector selectedOptions = _dataOptions.value(); int numSelected = selectedOptions.size(); std::vector min(numSelected, std::numeric_limits::max()); std::vector max(numSelected, std::numeric_limits::min()); std::vector logmean(numSelected, 0); std::vector sum(numSelected, 0.0f); std::vector> optionValues(numSelected, std::vector()); float* data = new float[3*_dimensions.x*_dimensions.y]{0.0f}; int numValues = 0; while(getline(memorystream, line)){ if(line.find("#") == 0){ //part of the header continue; } std::stringstream ss(line); std::vector value; float v; while(ss >> v){ value.push_back(v); } if(value.size()){ for(int i=0; i inputData, float min, float max,float sum, int numOutputChannels, float logmean){ // HISTOGRAM // number of levels/bins/values const int levels = 512; // Normal Histogram where "levels" is the number of steps/bins std::vector histogram = std::vector(levels, 0); // Maps the old levels to new ones. std::vector newLevels = std::vector(levels, 0.0f); const int numValues = inputData.size(); // maps the data values to the histogram bin/index/level auto mapToHistogram = [levels](float val, float varMin, float varMax) { float probability = (val-varMin)/(varMax-varMin); float mappedValue = probability * levels; return glm::clamp(mappedValue, 0.0f, static_cast(levels - 1)); }; //Calculate the mean float mean = (1.0 / numValues) * sum; //Calculate the Standard Deviation float standardDeviation = sqrt (((pow(sum, 2.0)) - ((1.0/numValues) * (pow(sum,2.0)))) / (numValues - 1.0)); //calulate log mean logmean /= numValues; //HISTOGRAM FUNCTIONALITY //====================== if(_useHistogram.value()){ for(int i = 0; i < numValues; i++){ float v = inputData[i]; float pixelVal = mapToHistogram(v, min, max); histogram[(int)pixelVal]++; inputData[i] = pixelVal; } // Map mean and standard deviation to histogram levels mean = mapToHistogram(mean , min, max); logmean = mapToHistogram(logmean , min, max); standardDeviation = mapToHistogram(standardDeviation, min, max); min = 0.0f; max = levels - 1.0f; //Calculate the cumulative distributtion function (CDF) float previousCdf = 0.0f; for(int i = 0; i < levels; i++){ float probability = histogram[i] / (float)numValues; float cdf = previousCdf + probability; cdf = glm::clamp(cdf, 0.0f, 1.0f); //just in case newLevels[i] = cdf * (levels-1); previousCdf = cdf; } } //====================== for(int i=0; i< numValues; i++){ float v = inputData[i]; // if use histogram get the equalized values if(_useHistogram.value()){ v = newLevels[(int)v]; // Map mean and standard deviation to new histogram levels mean = newLevels[(int) mean]; logmean = newLevels[(int) logmean]; standardDeviation = newLevels[(int) standardDeviation]; } // Normalize values if(_useLog.value()){ v = normalizeWithLogarithm(v, logmean); }else{ v = normalizeWithStandardScore(v, mean, standardDeviation); } if(numOutputChannels == 1 && inputChannel > 0){ // take the average. outputData[3*i+0] = ( outputData[3*i+0] * inputChannel + v ) / (inputChannel+1); } else { outputData[3*i+inputChannel] += v; } } } float DataPlane::normalizeWithStandardScore(float value, float mean, float sd){ float zScoreMin = _normValues.value().x; float zScoreMax = _normValues.value().y; float standardScore = ( value - mean ) / sd; // Clamp intresting values standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax); //return and normalize return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax ); } float DataPlane::normalizeWithLogarithm(float value, int logMean){ float logMin = 10*_normValues.value().x; float logMax = 10*_normValues.value().y; float logNormalized = ((value/pow(10,logMean)+logMin))/(logMin+logMax); return glm::clamp(logNormalized,0.0f, 1.0f); } int DataPlane::id(){ static int id = 0; return id++; } }// namespace openspace