/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include // open space includes #include #include #include // ghoul includes #include #include #include // STL includes #include #define _USE_MATH_DEFINES #include namespace { const std::string _loggerCat = "PatchRenderer"; const std::string keyFrame = "Frame"; const std::string keyGeometry = "Geometry"; const std::string keyShading = "PerformShading"; const std::string keyBody = "Body"; } namespace openspace { ChunkRenderer::ChunkRenderer( std::shared_ptr grid, std::shared_ptr tileProviderManager) : _tileProviderManager(tileProviderManager) , _grid(grid) { _globalRenderingShaderProvider = std::shared_ptr (new LayeredTextureShaderProvider( "GlobalChunkedLodPatch", "${MODULE_GLOBEBROWSING}/shaders/globalchunkedlodpatch_vs.glsl", "${MODULE_GLOBEBROWSING}/shaders/globalchunkedlodpatch_fs.glsl")); _localRenderingShaderProvider = std::shared_ptr (new LayeredTextureShaderProvider( "LocalChunkedLodPatch", "${MODULE_GLOBEBROWSING}/shaders/localchunkedlodpatch_vs.glsl", "${MODULE_GLOBEBROWSING}/shaders/localchunkedlodpatch_fs.glsl")); _globalProgramUniformHandler = std::shared_ptr (new LayeredTextureShaderUniformIdHandler()); _localProgramUniformHandler = std::shared_ptr (new LayeredTextureShaderUniformIdHandler()); } void ChunkRenderer::renderChunk(const Chunk& chunk, const RenderData& data) { if (chunk.index().level < 9) { renderChunkGlobally(chunk, data); } else { renderChunkLocally(chunk, data); } } void ChunkRenderer::update() { // unued atm. Could be used for caching or precalculating } void ChunkRenderer::setDepthTransformUniforms( std::shared_ptr uniformIdHandler, LayeredTextures::TextureCategory textureCategory, LayeredTextureShaderUniformIdHandler::BlendLayerSuffix blendLayerSuffix, size_t layerIndex, const TileDepthTransform& tileDepthTransform) { uniformIdHandler->programObject().setUniform( uniformIdHandler->getId( textureCategory, blendLayerSuffix, layerIndex, LayeredTextureShaderUniformIdHandler::GlslTileDataId::depthTransform_depthScale), tileDepthTransform.depthScale); uniformIdHandler->programObject().setUniform( uniformIdHandler->getId( textureCategory, blendLayerSuffix, layerIndex, LayeredTextureShaderUniformIdHandler::GlslTileDataId::depthTransform_depthOffset), tileDepthTransform.depthOffset); } void ChunkRenderer::activateTileAndSetTileUniforms( std::shared_ptr uniformIdHandler, LayeredTextures::TextureCategory textureCategory, LayeredTextureShaderUniformIdHandler::BlendLayerSuffix blendLayerSuffix, size_t layerIndex, ghoul::opengl::TextureUnit& texUnit, const TileAndTransform& tileAndTransform) { // Blend tile with two parents // The texture needs a unit to sample from texUnit.activate(); tileAndTransform.tile.texture->bind(); uniformIdHandler->programObject().setUniform( uniformIdHandler->getId( textureCategory, blendLayerSuffix, layerIndex, LayeredTextureShaderUniformIdHandler::GlslTileDataId::textureSampler), texUnit); uniformIdHandler->programObject().setUniform( uniformIdHandler->getId( textureCategory, blendLayerSuffix, layerIndex, LayeredTextureShaderUniformIdHandler::GlslTileDataId::uvTransform_uvScale), tileAndTransform.uvTransform.uvScale); uniformIdHandler->programObject().setUniform( uniformIdHandler->getId( textureCategory, blendLayerSuffix, layerIndex, LayeredTextureShaderUniformIdHandler::GlslTileDataId::uvTransform_uvOffset), tileAndTransform.uvTransform.uvOffset); } ProgramObject* ChunkRenderer::getActivatedProgramWithTileData( LayeredTextureShaderProvider* layeredTextureShaderProvider, std::shared_ptr programUniformHandler, const Chunk& chunk) { const ChunkIndex& chunkIndex = chunk.index(); std::array >, LayeredTextures::NUM_TEXTURE_CATEGORIES> tileProviders; LayeredTexturePreprocessingData layeredTexturePreprocessingData; for (size_t category = 0; category < LayeredTextures::NUM_TEXTURE_CATEGORIES; category++) { tileProviders[category] = _tileProviderManager->getActivatedLayerCategory( LayeredTextures::TextureCategory(category)); LayeredTextureInfo layeredTextureInfo; layeredTextureInfo.lastLayerIdx = tileProviders[category].size() - 1; layeredTextureInfo.layerBlendingEnabled = chunk.owner()->blendProperties[category]; layeredTexturePreprocessingData.layeredTextureInfo[category] = layeredTextureInfo; } layeredTexturePreprocessingData.keyValuePairs.push_back( std::pair( "useAtmosphere", std::to_string(chunk.owner()->atmosphereEnabled))); layeredTexturePreprocessingData.keyValuePairs.push_back( std::pair( "showChunkEdges", std::to_string(chunk.owner()->showChunkEdges))); // Now the shader program can be accessed ProgramObject* programObject = layeredTextureShaderProvider->getUpdatedShaderProgram( layeredTexturePreprocessingData); programUniformHandler->updateIdsIfNecessary(layeredTextureShaderProvider); // Activate the shader program programObject->activate(); // Initialize all texture units struct BlendTexUnits { ghoul::opengl::TextureUnit blendTexture0; ghoul::opengl::TextureUnit blendTexture1; ghoul::opengl::TextureUnit blendTexture2; }; std::array, LayeredTextures::NUM_TEXTURE_CATEGORIES> texUnits; for (size_t category = 0; category < LayeredTextures::NUM_TEXTURE_CATEGORIES; category++) { texUnits[category].resize(tileProviders[category].size()); } // Go through all the categories for (size_t category = 0; category < LayeredTextures::NUM_TEXTURE_CATEGORIES; category++) { // Go through all the providers in this category int i = 0; for (auto it = tileProviders[category].begin(); it != tileProviders[category].end(); it++) { auto tileProvider = *it; // Get the texture that should be used for rendering TileAndTransform tileAndTransform = tileProvider->getHighestResolutionTile(chunkIndex); if (tileAndTransform.tile.status == Tile::Status::Unavailable) { // don't render if no tile was available programObject->deactivate(); return nullptr; } activateTileAndSetTileUniforms( programUniformHandler, LayeredTextures::TextureCategory(category), LayeredTextureShaderUniformIdHandler::BlendLayerSuffix::none, i, texUnits[category][i].blendTexture0, tileAndTransform); // If blending is enabled, two more textures are needed if (layeredTexturePreprocessingData.layeredTextureInfo[category].layerBlendingEnabled) { TileAndTransform tileAndTransformParent1 = tileProvider->getHighestResolutionTile(chunkIndex, 1); if (tileAndTransformParent1.tile.status == Tile::Status::Unavailable) { tileAndTransformParent1 = tileAndTransform; } activateTileAndSetTileUniforms( programUniformHandler, LayeredTextures::TextureCategory(category), LayeredTextureShaderUniformIdHandler::BlendLayerSuffix::Parent1, i, texUnits[category][i].blendTexture1, tileAndTransformParent1); TileAndTransform tileAndTransformParent2 = tileProvider->getHighestResolutionTile(chunkIndex, 2); if (tileAndTransformParent2.tile.status == Tile::Status::Unavailable) { tileAndTransformParent2 = tileAndTransformParent1; } activateTileAndSetTileUniforms( programUniformHandler, LayeredTextures::TextureCategory(category), LayeredTextureShaderUniformIdHandler::BlendLayerSuffix::Parent2, i, texUnits[category][i].blendTexture2, tileAndTransformParent2); } i++; } } // Go through all the height maps and set depth tranforms int i = 0; for (auto it = tileProviders[LayeredTextures::HeightMaps].begin(); it != tileProviders[LayeredTextures::HeightMaps].end(); it++) { auto tileProvider = *it; TileDepthTransform depthTransform = tileProvider->depthTransform(); setDepthTransformUniforms( programUniformHandler, LayeredTextures::TextureCategory::HeightMaps, LayeredTextureShaderUniformIdHandler::BlendLayerSuffix::none, i, depthTransform); i++; } // The length of the skirts is proportional to its size programObject->setUniform("skirtLength", min(static_cast(chunk.surfacePatch().halfSize().lat * 1000000), 8700.0f)); programObject->setUniform("xSegments", _grid->xSegments()); return programObject; } void ChunkRenderer::renderChunkGlobally(const Chunk& chunk, const RenderData& data){ ProgramObject* programObject = getActivatedProgramWithTileData( _globalRenderingShaderProvider.get(), _globalProgramUniformHandler, chunk); if (programObject == nullptr) { return; } auto heightMapProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::HeightMaps); auto colorTextureProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::ColorTextures); auto nightTextureProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::NightTextures); auto overlayProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::Overlays); auto waterMaskProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::WaterMasks); const Ellipsoid& ellipsoid = chunk.owner()->ellipsoid(); // This information is only needed when doing blending bool blendAny = false; for (size_t category = 0; category < LayeredTextures::NUM_TEXTURE_CATEGORIES; category++) { blendAny |= chunk.owner()->blendProperties[category]; } if (blendAny && ((heightMapProviders.size() > 0 ) || (colorTextureProviders.size() > 0 ) || (nightTextureProviders.size() > 0 ) || (overlayProviders.size() > 0 ) || (waterMaskProviders.size() > 0))) { float distanceScaleFactor = chunk.owner()->lodScaleFactor * ellipsoid.minimumRadius(); programObject->setUniform("cameraPosition", vec3(data.camera.positionVec3())); programObject->setUniform("distanceScaleFactor", distanceScaleFactor); programObject->setUniform("chunkLevel", chunk.index().level); } // Calculate other uniform variables needed for rendering Geodetic2 swCorner = chunk.surfacePatch().southWestCorner(); auto patchSize = chunk.surfacePatch().size(); // TODO : Model transform should be fetched as a matrix directly. dmat4 modelTransform = dmat4(chunk.owner()->stateMatrix()); // Rotation modelTransform = translate(dmat4(1), data.position.dvec3()) * modelTransform; // Translation dmat4 viewTransform = data.camera.combinedViewMatrix(); mat4 modelViewTransform = mat4(viewTransform * modelTransform); mat4 modelViewProjectionTransform = data.camera.projectionMatrix() * modelViewTransform; // Upload the uniform variables programObject->setUniform("modelViewProjectionTransform", modelViewProjectionTransform); programObject->setUniform("minLatLon", vec2(swCorner.toLonLatVec2())); programObject->setUniform("lonLatScalingFactor", vec2(patchSize.toLonLatVec2())); programObject->setUniform("radiiSquared", vec3(ellipsoid.radiiSquared())); if (nightTextureProviders.size() > 0) { programObject->setUniform("modelViewTransform", modelViewTransform); } // OpenGL rendering settings glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); // render _grid->geometry().drawUsingActiveProgram(); // disable shader programObject->deactivate(); } void ChunkRenderer::renderChunkLocally(const Chunk& chunk, const RenderData& data) { ProgramObject* programObject = getActivatedProgramWithTileData( _localRenderingShaderProvider.get(), _localProgramUniformHandler, chunk); if (programObject == nullptr) { return; } using namespace glm; auto heightMapProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::HeightMaps); auto colorTextureProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::ColorTextures); auto nightTextureProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::NightTextures); auto overlayProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::Overlays); auto waterMaskProviders = _tileProviderManager->getActivatedLayerCategory(LayeredTextures::WaterMasks); const Ellipsoid& ellipsoid = chunk.owner()->ellipsoid(); // This information is only needed when doing blending bool blendAny = false; for (size_t category = 0; category < LayeredTextures::NUM_TEXTURE_CATEGORIES; category++) { blendAny |= chunk.owner()->blendProperties[category]; } if (blendAny && ((heightMapProviders.size() > 0) || (colorTextureProviders.size() > 0) || (nightTextureProviders.size() > 0) || (overlayProviders.size() > 0) || (waterMaskProviders.size() > 0))) { float distanceScaleFactor = chunk.owner()->lodScaleFactor * chunk.owner()->ellipsoid().minimumRadius(); programObject->setUniform("distanceScaleFactor", distanceScaleFactor); programObject->setUniform("chunkLevel", chunk.index().level); } // Calculate other uniform variables needed for rendering // TODO : Model transform should be fetched as a matrix directly. dmat4 modelTransform = translate(dmat4(1), data.position.dvec3()); dmat4 viewTransform = data.camera.combinedViewMatrix(); dmat4 modelViewTransform = viewTransform * modelTransform; Geodetic2 sw = chunk.surfacePatch().southWestCorner(); Geodetic2 se = chunk.surfacePatch().southEastCorner(); Geodetic2 nw = chunk.surfacePatch().northWestCorner(); Geodetic2 ne = chunk.surfacePatch().northEastCorner(); // Get model space positions of the four control points Vec3 patchSwModelSpace = ellipsoid.cartesianSurfacePosition(sw); Vec3 patchSeModelSpace = ellipsoid.cartesianSurfacePosition(se); Vec3 patchNwModelSpace = ellipsoid.cartesianSurfacePosition(nw); Vec3 patchNeModelSpace = ellipsoid.cartesianSurfacePosition(ne); // Transform all control points to camera space Vec3 patchSwCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchSwModelSpace, 1)); Vec3 patchSeCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchSeModelSpace, 1)); Vec3 patchNwCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchNwModelSpace, 1)); Vec3 patchNeCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchNeModelSpace, 1)); // Send control points to shader programObject->setUniform("p00", vec3(patchSwCameraSpace)); programObject->setUniform("p10", vec3(patchSeCameraSpace)); programObject->setUniform("p01", vec3(patchNwCameraSpace)); programObject->setUniform("p11", vec3(patchNeCameraSpace)); vec3 patchNormalCameraSpace = normalize( cross(patchSeCameraSpace - patchSwCameraSpace, patchNwCameraSpace - patchSwCameraSpace)); programObject->setUniform("patchNormalCameraSpace", patchNormalCameraSpace); programObject->setUniform("projectionTransform", data.camera.projectionMatrix()); // OpenGL rendering settings glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); // render _grid->geometry().drawUsingActiveProgram(); // disable shader programObject->deactivate(); } } // namespace openspace