/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2018 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define USING_STELLAR_TEST_GRID namespace { constexpr const char* _loggerCat = "RenderableStars"; constexpr const char* KeyFile = "File"; constexpr int8_t CurrentCacheVersion = 1; struct ColorVBOLayout { std::array position; // (x,y,z,e) float bvColor; // B-V color value float luminance; float absoluteMagnitude; }; struct VelocityVBOLayout { std::array position; // (x,y,z,e) float bvColor; // B-V color value float luminance; float absoluteMagnitude; float vx; // v_x float vy; // v_y float vz; // v_z }; struct SpeedVBOLayout { std::array position; // (x,y,z,e) float bvColor; // B-V color value float luminance; float absoluteMagnitude; float speed; }; static const openspace::properties::Property::PropertyInfo PsfTextureInfo = { "Texture", "Point Spread Function Texture", "The path to the texture that should be used as a point spread function for the " "stars." }; static const openspace::properties::Property::PropertyInfo ColorTextureInfo = { "ColorMap", "ColorBV Texture", "The path to the texture that is used to convert from the B-V value of the star " "to its color. The texture is used as a one dimensional lookup function." }; static const openspace::properties::Property::PropertyInfo ColorOptionInfo = { "ColorOption", "Color Option", "This value determines which quantity is used for determining the color of the " "stars." }; static const openspace::properties::Property::PropertyInfo MagnitudeExponentInfo = { "MagnitudeExponent", "MagnitudeExponent", "Adjust star magnitude by 10^MagnitudeExponent. " "Stars closer than this distance are given full opacity. " "Farther away, stars dim proportionally to the logarithm of their distance." }; static const openspace::properties::Property::PropertyInfo SharpnessInfo = { "Sharpness", "Sharpness", "Adjust star sharpness" }; static const openspace::properties::Property::PropertyInfo BillboardSizeInfo = { "BillboardSize", "Billboard Size", "Set the billboard size of all stars" }; } // namespace namespace openspace { documentation::Documentation RenderableStars::Documentation() { using namespace documentation; return { "RenderableStars", "space_renderablestars", { { "Type", new StringEqualVerifier("RenderableStars"), Optional::No }, { KeyFile, new StringVerifier, Optional::No, "The path to the SPECK file that contains information about the stars " "being rendered." }, { PsfTextureInfo.identifier, new StringVerifier, Optional::No, PsfTextureInfo.description }, { ColorTextureInfo.identifier, new StringVerifier, Optional::No, ColorTextureInfo.description }, { ColorOptionInfo.identifier, new StringInListVerifier({ "Color", "Velocity", "Speed" }), Optional::Yes, ColorOptionInfo.description }, { MagnitudeExponentInfo.identifier, new DoubleVerifier, Optional::Yes, MagnitudeExponentInfo.description }, { SharpnessInfo.identifier, new DoubleVerifier, Optional::Yes, SharpnessInfo.description }, { BillboardSizeInfo.identifier, new DoubleVerifier, Optional::Yes, BillboardSizeInfo.description } } }; } RenderableStars::RenderableStars(const ghoul::Dictionary& dictionary) : Renderable(dictionary) , _pointSpreadFunctionTexturePath(PsfTextureInfo) , _pointSpreadFunctionTexture(nullptr) , _pointSpreadFunctionTextureIsDirty(true) , _colorTexturePath(ColorTextureInfo) , _colorTexture(nullptr) , _colorTextureIsDirty(true) , _colorOption(ColorOptionInfo, properties::OptionProperty::DisplayType::Dropdown) , _dataIsDirty(true) , _magnitudeExponent(MagnitudeExponentInfo, 19.f, 0.f, 30.f) , _sharpness(SharpnessInfo, 1.f, 0.f, 5.f) , _billboardSize(BillboardSizeInfo, 30.f, 1.f, 100.f) , _program(nullptr) , _speckFile("") , _nValuesPerStar(0) , _vao(0) , _vbo(0) { using File = ghoul::filesystem::File; documentation::testSpecificationAndThrow( Documentation(), dictionary, "RenderableStars" ); _pointSpreadFunctionTexturePath = absPath(dictionary.value( PsfTextureInfo.identifier )); _pointSpreadFunctionFile = std::make_unique(_pointSpreadFunctionTexturePath); _colorTexturePath = absPath(dictionary.value( ColorTextureInfo.identifier )); _colorTextureFile = std::make_unique(_colorTexturePath); _speckFile = absPath(dictionary.value(KeyFile)); _colorOption.addOptions({ { ColorOption::Color, "Color" }, { ColorOption::Velocity, "Velocity" }, { ColorOption::Speed, "Speed" } }); if (dictionary.hasKey(ColorOptionInfo.identifier)) { const std::string colorOption = dictionary.value( ColorOptionInfo.identifier ); if (colorOption == "Color") { _colorOption = ColorOption::Color; } else if (colorOption == "Velocity") { _colorOption = ColorOption::Velocity; } else { _colorOption = ColorOption::Speed; } } _colorOption.onChange([&] { _dataIsDirty = true; }); addProperty(_colorOption); _pointSpreadFunctionTexturePath.onChange( [&]{ _pointSpreadFunctionTextureIsDirty = true; } ); _pointSpreadFunctionFile->setCallback( [&](const File&) { _pointSpreadFunctionTextureIsDirty = true; } ); addProperty(_pointSpreadFunctionTexturePath); _colorTexturePath.onChange([&]{ _colorTextureIsDirty = true; }); _colorTextureFile->setCallback( [&](const File&) { _colorTextureIsDirty = true; } ); addProperty(_colorTexturePath); if (dictionary.hasKey(MagnitudeExponentInfo.identifier)) { _magnitudeExponent = static_cast( dictionary.value(MagnitudeExponentInfo.identifier) ); } addProperty(_magnitudeExponent); if (dictionary.hasKey(SharpnessInfo.identifier)) { _sharpness = static_cast( dictionary.value(SharpnessInfo.identifier) ); } addProperty(_sharpness); if (dictionary.hasKey(BillboardSizeInfo.identifier)) { _billboardSize = static_cast( dictionary.value(BillboardSizeInfo.identifier) ); } addProperty(_billboardSize); } RenderableStars::~RenderableStars() {} bool RenderableStars::isReady() const { return (_program != nullptr) && (!_fullData.empty()); } void RenderableStars::initializeGL() { RenderEngine& renderEngine = OsEng.renderEngine(); _program = renderEngine.buildRenderProgram("Star", absPath("${MODULE_SPACE}/shaders/star_vs.glsl"), absPath("${MODULE_SPACE}/shaders/star_fs.glsl"), absPath("${MODULE_SPACE}/shaders/star_ge.glsl") ); _uniformCache.model = _program->uniformLocation("model"); _uniformCache.view = _program->uniformLocation("view"); _uniformCache.viewScaling = _program->uniformLocation("viewScaling"); _uniformCache.projection = _program->uniformLocation("projection"); _uniformCache.colorOption = _program->uniformLocation("colorOption"); _uniformCache.magnitudeExponent = _program->uniformLocation("magnitudeExponent"); _uniformCache.sharpness = _program->uniformLocation("sharpness"); _uniformCache.billboardSize = _program->uniformLocation("billboardSize"); _uniformCache.screenSize = _program->uniformLocation("screenSize"); _uniformCache.psfTexture = _program->uniformLocation("psfTexture"); _uniformCache.colorTexture = _program->uniformLocation("colorTexture"); bool success = loadData(); if (!success) { throw ghoul::RuntimeError("Error loading data"); } } void RenderableStars::deinitializeGL() { glDeleteBuffers(1, &_vbo); _vbo = 0; glDeleteVertexArrays(1, &_vao); _vao = 0; _pointSpreadFunctionTexture = nullptr; _colorTexture = nullptr; RenderEngine& renderEngine = OsEng.renderEngine(); if (_program) { renderEngine.removeRenderProgram(_program.get()); _program = nullptr; } } void RenderableStars::render(const RenderData& data, RendererTasks&) { glBlendFunc(GL_SRC_ALPHA, GL_ONE); glDepthMask(false); _program->activate(); glm::mat4 model = glm::translate(glm::dmat4(1.0), data.modelTransform.translation) * glm::dmat4(data.modelTransform.rotation) * glm::dmat4(glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale))); glm::mat4 view = data.camera.combinedViewMatrix(); glm::mat4 projection = data.camera.projectionMatrix(); float viewScaling = data.camera.scaling(); _program->setUniform(_uniformCache.model, model); _program->setUniform(_uniformCache.view, view); _program->setUniform(_uniformCache.projection, projection); _program->setUniform(_uniformCache.viewScaling, viewScaling); _program->setUniform(_uniformCache.colorOption, _colorOption); _program->setUniform(_uniformCache.magnitudeExponent, _magnitudeExponent); _program->setUniform(_uniformCache.sharpness, _sharpness); _program->setUniform(_uniformCache.billboardSize, _billboardSize); _program->setUniform( _uniformCache.screenSize, glm::vec2(OsEng.renderEngine().renderingResolution()) ); _program->setUniform("eyePosition", glm::vec3(data.camera.eyePositionVec3())); ghoul::opengl::TextureUnit psfUnit; psfUnit.activate(); _pointSpreadFunctionTexture->bind(); _program->setUniform(_uniformCache.psfTexture, psfUnit); ghoul::opengl::TextureUnit colorUnit; colorUnit.activate(); _colorTexture->bind(); _program->setUniform(_uniformCache.colorTexture, colorUnit); glBindVertexArray(_vao); const GLsizei nStars = static_cast(_fullData.size() / _nValuesPerStar); glDrawArrays(GL_POINTS, 0, nStars); glBindVertexArray(0); _program->deactivate(); glDepthMask(true); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } void RenderableStars::update(const UpdateData&) { if (_dataIsDirty) { const int value = _colorOption; LDEBUG("Regenerating data"); createDataSlice(ColorOption(value)); int size = static_cast(_slicedData.size()); if (_vao == 0) { glGenVertexArrays(1, &_vao); } if (_vbo == 0) { glGenBuffers(1, &_vbo); } glBindVertexArray(_vao); glBindBuffer(GL_ARRAY_BUFFER, _vbo); glBufferData( GL_ARRAY_BUFFER, size * sizeof(GLfloat), &_slicedData[0], GL_STATIC_DRAW ); GLint positionAttrib = _program->attributeLocation("in_position"); GLint brightnessDataAttrib = _program->attributeLocation("in_brightness"); const size_t nStars = _fullData.size() / _nValuesPerStar; const size_t nValues = _slicedData.size() / nStars; GLsizei stride = static_cast(sizeof(GLfloat) * nValues); glEnableVertexAttribArray(positionAttrib); glEnableVertexAttribArray(brightnessDataAttrib); const int colorOption = _colorOption; switch (colorOption) { case ColorOption::Color: glVertexAttribPointer( positionAttrib, 4, GL_FLOAT, GL_FALSE, stride, nullptr // = offsetof(ColorVBOLayout, position) ); glVertexAttribPointer( brightnessDataAttrib, 3, GL_FLOAT, GL_FALSE, stride, reinterpret_cast(offsetof(ColorVBOLayout, bvColor)) ); break; case ColorOption::Velocity: { glVertexAttribPointer( positionAttrib, 4, GL_FLOAT, GL_FALSE, stride, nullptr // = offsetof(VelocityVBOLayout, position) ); glVertexAttribPointer( brightnessDataAttrib, 3, GL_FLOAT, GL_FALSE, stride, reinterpret_cast(offsetof(VelocityVBOLayout, bvColor)) ); GLint velocityAttrib = _program->attributeLocation("in_velocity"); glEnableVertexAttribArray(velocityAttrib); glVertexAttribPointer( velocityAttrib, 3, GL_FLOAT, GL_TRUE, stride, reinterpret_cast(offsetof(VelocityVBOLayout, vx)) ); break; } case ColorOption::Speed: { glVertexAttribPointer( positionAttrib, 4, GL_FLOAT, GL_FALSE, stride, nullptr // = offsetof(SpeedVBOLayout, position) ); glVertexAttribPointer( brightnessDataAttrib, 3, GL_FLOAT, GL_FALSE, stride, reinterpret_cast(offsetof(SpeedVBOLayout, bvColor)) ); GLint speedAttrib = _program->attributeLocation("in_speed"); glEnableVertexAttribArray(speedAttrib); glVertexAttribPointer( speedAttrib, 1, GL_FLOAT, GL_TRUE, stride, reinterpret_cast(offsetof(SpeedVBOLayout, speed)) ); } } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); _dataIsDirty = false; } if (_pointSpreadFunctionTextureIsDirty) { LDEBUG("Reloading Point Spread Function texture"); _pointSpreadFunctionTexture = nullptr; if (_pointSpreadFunctionTexturePath.value() != "") { _pointSpreadFunctionTexture = ghoul::io::TextureReader::ref().loadTexture( absPath(_pointSpreadFunctionTexturePath) ); if (_pointSpreadFunctionTexture) { LDEBUG(fmt::format( "Loaded texture from '{}'", absPath(_pointSpreadFunctionTexturePath) )); _pointSpreadFunctionTexture->uploadTexture(); } _pointSpreadFunctionTexture->setFilter( ghoul::opengl::Texture::FilterMode::AnisotropicMipMap ); _pointSpreadFunctionFile = std::make_unique( _pointSpreadFunctionTexturePath ); _pointSpreadFunctionFile->setCallback( [&](const ghoul::filesystem::File&) { _pointSpreadFunctionTextureIsDirty = true; } ); } _pointSpreadFunctionTextureIsDirty = false; } if (_colorTextureIsDirty) { LDEBUG("Reloading Color Texture"); _colorTexture = nullptr; if (_colorTexturePath.value() != "") { _colorTexture = ghoul::io::TextureReader::ref().loadTexture( absPath(_colorTexturePath) ); if (_colorTexture) { LDEBUG(fmt::format( "Loaded texture from '{}'", absPath(_colorTexturePath) )); _colorTexture->uploadTexture(); } _colorTextureFile = std::make_unique( _colorTexturePath ); _colorTextureFile->setCallback( [&](const ghoul::filesystem::File&) { _colorTextureIsDirty = true; } ); } _colorTextureIsDirty = false; } if (_program->isDirty()) { _program->rebuildFromFile(); _uniformCache.model = _program->uniformLocation("model"); _uniformCache.view = _program->uniformLocation("view"); _uniformCache.viewScaling = _program->uniformLocation("viewScaling"); _uniformCache.projection = _program->uniformLocation("projection"); _uniformCache.colorOption = _program->uniformLocation("colorOption"); _uniformCache.magnitudeExponent = _program->uniformLocation("magnitudeExponent"); _uniformCache.sharpness = _program->uniformLocation("sharpness"); _uniformCache.billboardSize = _program->uniformLocation("billboardSize"); _uniformCache.screenSize = _program->uniformLocation("screenSize"); _uniformCache.psfTexture = _program->uniformLocation("psfTexture"); _uniformCache.colorTexture = _program->uniformLocation("colorTexture"); } } bool RenderableStars::loadData() { std::string _file = _speckFile; std::string cachedFile = FileSys.cacheManager()->cachedFilename( _file, ghoul::filesystem::CacheManager::Persistent::Yes ); bool hasCachedFile = FileSys.fileExists(cachedFile); if (hasCachedFile) { LINFO(fmt::format( "Cached file '{}' used for Speck file '{}'", cachedFile, _file )); bool success = loadCachedFile(cachedFile); if (success) { return true; } else { FileSys.cacheManager()->removeCacheFile(_file); // Intentional fall-through to the 'else' computation to generate the cache // file for the next run } } else { LINFO(fmt::format("Cache for Speck file '{}' not found", _file)); } LINFO(fmt::format("Loading Speck file '{}'", _file)); bool success = readSpeckFile(); if (!success) { return false; } LINFO("Saving cache"); success = saveCachedFile(cachedFile); return success; } bool RenderableStars::readSpeckFile() { std::string _file = _speckFile; std::ifstream file(_file); if (!file.good()) { LERROR(fmt::format("Failed to open Speck file '{}'", _file)); return false; } _nValuesPerStar = 0; // The beginning of the speck file has a header that either contains comments // (signaled by a preceding '#') or information about the structure of the file // (signaled by the keywords 'datavar', 'texturevar', and 'texture') std::string line = ""; while (true) { std::streampos position = file.tellg(); std::getline(file, line); if (line[0] == '#' || line.empty()) { continue; } if (line.substr(0, 7) != "datavar" && line.substr(0, 10) != "texturevar" && line.substr(0, 7) != "texture") { // we read a line that doesn't belong to the header, so we have to jump back // before the beginning of the current line file.seekg(position); break; } if (line.substr(0, 7) == "datavar") { // datavar lines are structured as follows: // datavar # description // where # is the index of the data variable; so if we repeatedly overwrite // the 'nValues' variable with the latest index, we will end up with the total // number of values (+3 since X Y Z are not counted in the Speck file index) std::stringstream str(line); std::string dummy; str >> dummy; str >> _nValuesPerStar; _nValuesPerStar += 1; // We want the number, but the index is 0 based } } _nValuesPerStar += 3; // X Y Z are not counted in the Speck file indices float minLumValue = std::numeric_limits::max(); float maxLumValue = std::numeric_limits::min(); do { std::vector values(_nValuesPerStar); std::getline(file, line); std::stringstream str(line); for (int i = 0; i < _nValuesPerStar; ++i) { str >> values[i]; } bool nullArray = true; for (size_t i = 0; i < values.size(); ++i) { if (values[i] != 0.0) { nullArray = false; break; } } minLumValue = std::min(values[4], minLumValue); maxLumValue = std::max(values[4], minLumValue); if (!nullArray) { _fullData.insert(_fullData.end(), values.begin(), values.end()); } } while (!file.eof()); // Normalize Luminosity: int luminosityVarColumnPos = 4; for (size_t i = 0; i < _fullData.size(); i += _nValuesPerStar) { _fullData[i + luminosityVarColumnPos] = (_fullData[i + luminosityVarColumnPos] - minLumValue) / (maxLumValue - minLumValue); } return true; } bool RenderableStars::loadCachedFile(const std::string& file) { std::ifstream fileStream(file, std::ifstream::binary); if (fileStream.good()) { int8_t version = 0; fileStream.read(reinterpret_cast(&version), sizeof(int8_t)); if (version != CurrentCacheVersion) { LINFO("The format of the cached file has changed: deleting old cache"); fileStream.close(); FileSys.deleteFile(file); return false; } int32_t nValues = 0; fileStream.read(reinterpret_cast(&nValues), sizeof(int32_t)); fileStream.read(reinterpret_cast(&_nValuesPerStar), sizeof(int32_t)); _fullData.resize(nValues); fileStream.read(reinterpret_cast(&_fullData[0]), nValues * sizeof(_fullData[0])); bool success = fileStream.good(); return success; } else { LERROR(fmt::format("Error opening file '{}' for loading cache file", file)); return false; } } bool RenderableStars::saveCachedFile(const std::string& file) const { std::ofstream fileStream(file, std::ofstream::binary); if (fileStream.good()) { fileStream.write(reinterpret_cast(&CurrentCacheVersion), sizeof(int8_t)); int32_t nValues = static_cast(_fullData.size()); if (nValues == 0) { LERROR("Error writing cache: No values were loaded"); return false; } fileStream.write(reinterpret_cast(&nValues), sizeof(int32_t)); int32_t nValuesPerStar = static_cast(_nValuesPerStar); fileStream.write(reinterpret_cast(&nValuesPerStar), sizeof(int32_t)); size_t nBytes = nValues * sizeof(_fullData[0]); fileStream.write(reinterpret_cast(&_fullData[0]), nBytes); bool success = fileStream.good(); return success; } else { LERROR(fmt::format("Error opening file '{}' for save cache file", file)); return false; } } void RenderableStars::createDataSlice(ColorOption option) { _slicedData.clear(); for (size_t i = 0; i < _fullData.size(); i+=_nValuesPerStar) { glm::vec3 p = glm::vec3(_fullData[i + 0], _fullData[i + 1], _fullData[i + 2]); p *= openspace::distanceconstants::Parsec; switch (option) { case ColorOption::Color: { union { ColorVBOLayout value; std::array data; } layout; layout.value.position = { { p[0], p[1], p[2], 1.0 } }; #ifdef USING_STELLAR_TEST_GRID layout.value.bvColor = 0.650;// _fullData[i + 3]; layout.value.luminance = _fullData[i + 4]; layout.value.absoluteMagnitude = _fullData[i + 3]; #else layout.value.bvColor = _fullData[i + 3]; layout.value.luminance = _fullData[i + 4]; layout.value.absoluteMagnitude = _fullData[i + 5]; #endif _slicedData.insert(_slicedData.end(), layout.data.begin(), layout.data.end()); break; } case ColorOption::Velocity: { union { VelocityVBOLayout value; std::array data; } layout; layout.value.position = { { p[0], p[1], p[2], 1.0 } }; layout.value.bvColor = _fullData[i + 3]; layout.value.luminance = _fullData[i + 4]; layout.value.absoluteMagnitude = _fullData[i + 5]; layout.value.vx = _fullData[i + 12]; layout.value.vy = _fullData[i + 13]; layout.value.vz = _fullData[i + 14]; _slicedData.insert(_slicedData.end(), layout.data.begin(), layout.data.end()); break; } case ColorOption::Speed: { union { SpeedVBOLayout value; std::array data; } layout; layout.value.position = { { p[0], p[1], p[2], 1.0 } }; layout.value.bvColor = _fullData[i + 3]; layout.value.luminance = _fullData[i + 4]; layout.value.absoluteMagnitude = _fullData[i + 5]; layout.value.speed = _fullData[i + 15]; _slicedData.insert(_slicedData.end(), layout.data.begin(), layout.data.end()); break; } } } } } // namespace openspace