/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ #include #include #include #include #include #include #include #include namespace { const std::string _loggerCat = "LocalErrorHistogramManager"; } namespace openspace { LocalErrorHistogramManager::LocalErrorHistogramManager(TSP* tsp) : _tsp(tsp) {} LocalErrorHistogramManager::~LocalErrorHistogramManager() {} bool LocalErrorHistogramManager::buildHistograms(int numBins) { LINFO("Build histograms with " << numBins << " bins each"); _numBins = numBins; _file = &(_tsp->file()); if (!_file->is_open()) { return false; } _minBin = 0.0; // Should be calculated from tsp file _maxBin = 1.0; // Should be calculated from tsp file as (maxValue - minValue) unsigned int numOtLevels = _tsp->numOTLevels(); unsigned int numOtLeaves = pow(8, numOtLevels - 1); unsigned int numBstLeaves = pow(2, _tsp->numBSTLevels() - 1); _numInnerNodes = _tsp->numTotalNodes() - numOtLeaves * numBstLeaves; _spatialHistograms = std::vector(_numInnerNodes); _temporalHistograms = std::vector(_numInnerNodes); for (unsigned int i = 0; i < _numInnerNodes; i++) { _spatialHistograms[i] = Histogram(_minBin, _maxBin, numBins); _temporalHistograms[i] = Histogram(_minBin, _maxBin, numBins); } // All TSP Leaves int numOtNodes = _tsp->numOTNodes(); int otOffset = (pow(8, numOtLevels - 1) - 1) / 7; int numBstNodes = _tsp->numBSTNodes(); int bstOffset = numBstNodes / 2; int numberOfLeaves = numOtLeaves * numBstLeaves; LINFO("Building spatial histograms"); ProgressBar pb1(numberOfLeaves); int processedLeaves = 0; pb1.print(processedLeaves); bool success = true; for (int bst = bstOffset; bst < numBstNodes; bst++) { for (int ot = otOffset; ot < numOtNodes; ot++) { success &= buildFromOctreeChild(bst, ot); if (!success) LERROR("Failed in buildFromOctreeChild"); if (!success) return false; pb1.print(processedLeaves++); } } //pb1.stop(); LINFO("Building temporal histograms"); ProgressBar pb2(numberOfLeaves); processedLeaves = 0; pb2.print(processedLeaves); for (int ot = otOffset; ot < numOtNodes; ot++) { for (int bst = bstOffset; bst < numBstNodes; bst++) { success &= buildFromBstChild(bst, ot); if (!success) LERROR("Failed in buildFromBstChild"); if (!success) return false; pb2.print(processedLeaves++); } } //pb2.stop(); return success; } bool LocalErrorHistogramManager::buildFromOctreeChild(unsigned int bstOffset, unsigned int octreeOffset) { // Add errors to octree parent histogram int numOtNodes = _tsp->numOTNodes(); unsigned int childIndex = bstOffset * numOtNodes + octreeOffset; bool isOctreeLeaf = _tsp->isOctreeLeaf(childIndex); if (octreeOffset > 0) { // Not octree root std::vector childValues; std::vector parentValues; int octreeParent = parentOffset(octreeOffset, 8); unsigned int parentIndex = bstOffset * numOtNodes + octreeParent; unsigned int parentInnerNodeIndex = brickToInnerNodeIndex(parentIndex); if (isOctreeLeaf) { childValues = readValues(childIndex); } else { unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); auto it = _voxelCache.find(childInnerNodeIndex); if (it != _voxelCache.end()) { childValues = it->second; } else { LERROR("Child " << childIndex << " visited without cache, " << bstOffset << ", " << octreeOffset); return false; } } int octreeChildIndex = (octreeOffset - 1) % 8; if (octreeChildIndex == 0) { parentValues = readValues(parentIndex); _voxelCache[parentInnerNodeIndex] = parentValues; } else { auto it = _voxelCache.find(parentInnerNodeIndex); if (it != _voxelCache.end()) { parentValues = it->second; } else { LERROR("Parent " << parentIndex << " visited without cache"); return false; } } // Compare values and add errors to parent histogram unsigned int paddedBrickDim = _tsp->paddedBrickDim(); unsigned int brickDim = _tsp->brickDim(); unsigned int padding = (paddedBrickDim - brickDim) / 2; glm::vec3 parentOffset = glm::vec3(octreeChildIndex % 2, (octreeChildIndex / 2) % 2, octreeChildIndex / 4) * float(brickDim) / 2.f; for (int z = 0; z < brickDim; z++) { for (int y = 0; y < brickDim; y++) { for (int x = 0; x < brickDim; x++) { glm::vec3 childSamplePoint = glm::vec3(x, y, z) + glm::vec3(padding); glm::vec3 parentSamplePoint = parentOffset + (glm::vec3(x, y, z) + glm::vec3(0.5)) * 0.5f; float childValue = childValues[linearCoords(childSamplePoint)]; float parentValue = interpolate(parentSamplePoint, parentValues); // Divide by number of child voxels that will be taken into account float rectangleHeight = std::abs(childValue - parentValue) / 8.0; _spatialHistograms[parentInnerNodeIndex].addRectangle(childValue, parentValue, rectangleHeight); } } } bool isLastOctreeChild = octreeOffset > 0 && octreeChildIndex == 7; if (isLastOctreeChild) { buildFromOctreeChild(bstOffset, octreeParent); } } if (!isOctreeLeaf) { unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); _voxelCache.erase(childInnerNodeIndex); } int bstChildIndex = bstOffset % 2; bool isLastBstChild = bstOffset > 0 && bstChildIndex == 0; if (isOctreeLeaf && isLastBstChild) { int bstParent = parentOffset(bstOffset, 2); buildFromOctreeChild(bstParent, octreeOffset); } return true; } bool LocalErrorHistogramManager::buildFromBstChild(unsigned int bstOffset, unsigned int octreeOffset) { // Add errors to bst parent histogram int numOtNodes = _tsp->numOTNodes(); unsigned int childIndex = bstOffset * numOtNodes + octreeOffset; bool isBstLeaf = _tsp->isBstLeaf(childIndex); if (bstOffset > 0) { // Not BST root std::vector childValues; std::vector parentValues; int bstParent = parentOffset(bstOffset, 2); unsigned int parentIndex = bstParent * numOtNodes + octreeOffset; unsigned int parentInnerNodeIndex = brickToInnerNodeIndex(parentIndex); if (isBstLeaf) { childValues = readValues(childIndex); } else { unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); auto it = _voxelCache.find(childInnerNodeIndex); if (it != _voxelCache.end()) { childValues = it->second; } else { LERROR("Child " << childIndex << " visited without cache"); return false; } } int bstChildIndex = bstOffset % 2; if (bstChildIndex == 1) { parentValues = readValues(parentIndex); _voxelCache[parentInnerNodeIndex] = parentValues; } else { auto it = _voxelCache.find(parentInnerNodeIndex); if (it != _voxelCache.end()) { parentValues = it->second; } else { LERROR("Parent " << parentIndex << " visited without cache"); return false; } } // Compare values and add errors to parent histogram unsigned int paddedBrickDim = _tsp->paddedBrickDim(); unsigned int brickDim = _tsp->brickDim(); unsigned int padding = (paddedBrickDim - brickDim) / 2; for (int z = 0; z < brickDim; z++) { for (int y = 0; y < brickDim; y++) { for (int x = 0; x < brickDim; x++) { glm::vec3 samplePoint = glm::vec3(x, y, z) + glm::vec3(padding); unsigned int linearSamplePoint = linearCoords(samplePoint); float childValue = childValues[linearSamplePoint]; float parentValue = parentValues[linearSamplePoint]; // Divide by number of child voxels that will be taken into account float rectangleHeight = std::abs(childValue - parentValue) / 2.0; _temporalHistograms[parentInnerNodeIndex].addRectangle(childValue, parentValue, rectangleHeight); } } } bool isLastBstChild = bstOffset > 0 && bstChildIndex == 0; if (isLastBstChild) { buildFromBstChild(bstParent, octreeOffset); } } if (!isBstLeaf) { unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex); _voxelCache.erase(childInnerNodeIndex); } int octreeChildIndex = (octreeOffset - 1) % 8; bool isLastOctreeChild = octreeOffset > 0 && octreeChildIndex == 7; if (isBstLeaf && isLastOctreeChild) { int octreeParent = parentOffset(octreeOffset, 8); buildFromBstChild(bstOffset, octreeParent); } return true; } bool LocalErrorHistogramManager::loadFromFile(const std::string& filename) { std::ifstream file(filename, std::ios::in | std::ios::binary); if (!file.is_open()) { return false; } file.read(reinterpret_cast(&_numInnerNodes), sizeof(int)); file.read(reinterpret_cast(&_numBins), sizeof(int)); file.read(reinterpret_cast(&_minBin), sizeof(float)); file.read(reinterpret_cast(&_maxBin), sizeof(float)); int nFloats = _numInnerNodes * _numBins; float* histogramData = new float[nFloats]; file.read(reinterpret_cast(histogramData), sizeof(float) * nFloats); _spatialHistograms = std::vector(_numInnerNodes); for (int i = 0; i < _numInnerNodes; ++i) { int offset = i*_numBins; float* data = new float[_numBins]; memcpy(data, &histogramData[offset], sizeof(float) * _numBins); _spatialHistograms[i] = Histogram(_minBin, _maxBin, _numBins, data); } file.read(reinterpret_cast(histogramData), sizeof(float) * nFloats); _temporalHistograms = std::vector(_numInnerNodes); for (int i = 0; i < _numInnerNodes; ++i) { int offset = i*_numBins; float* data = new float[_numBins]; memcpy(data, &histogramData[offset], sizeof(float) * _numBins); _temporalHistograms[i] = Histogram(_minBin, _maxBin, _numBins, data); } delete[] histogramData; // No need to deallocate histogram data, since histograms take ownership. file.close(); return true; } bool LocalErrorHistogramManager::saveToFile(const std::string& filename) { std::ofstream file(filename, std::ios::out | std::ios::binary); if (!file.is_open()) { return false; } file.write(reinterpret_cast(&_numInnerNodes), sizeof(int)); file.write(reinterpret_cast(&_numBins), sizeof(int)); file.write(reinterpret_cast(&_minBin), sizeof(float)); file.write(reinterpret_cast(&_maxBin), sizeof(float)); int nFloats = _numInnerNodes * _numBins; float* histogramData = new float[nFloats]; for (int i = 0; i < _numInnerNodes; ++i) { int offset = i*_numBins; memcpy(&histogramData[offset], _spatialHistograms[i].data(), sizeof(float) * _numBins); } file.write(reinterpret_cast(histogramData), sizeof(float) * nFloats); for (int i = 0; i < _numInnerNodes; ++i) { int offset = i*_numBins; memcpy(&histogramData[offset], _temporalHistograms[i].data(), sizeof(float) * _numBins); } file.write(reinterpret_cast(histogramData), sizeof(float) * nFloats); delete[] histogramData; file.close(); return true; } unsigned int LocalErrorHistogramManager::linearCoords(glm::vec3 coords) const { return linearCoords(glm::ivec3(coords)); } unsigned int LocalErrorHistogramManager::linearCoords(int x, int y, int z) const { return linearCoords(glm::ivec3(x, y, z)); } unsigned int LocalErrorHistogramManager::linearCoords(glm::ivec3 coords) const { unsigned int paddedBrickDim = _tsp->paddedBrickDim(); return coords.z * paddedBrickDim * paddedBrickDim + coords.y * paddedBrickDim + coords.x; } float LocalErrorHistogramManager::interpolate(glm::vec3 samplePoint, const std::vector& voxels) const { int lowX = samplePoint.x; int lowY = samplePoint.y; int lowZ = samplePoint.z; int highX = ceil(samplePoint.x); int highY = ceil(samplePoint.y); int highZ = ceil(samplePoint.z); float interpolatorX = 1.0 - (samplePoint.x - lowX); float interpolatorY = 1.0 - (samplePoint.y - lowY); float interpolatorZ = 1.0 - (samplePoint.z - lowZ); float v000 = voxels[linearCoords(lowX, lowY, lowZ)]; float v001 = voxels[linearCoords(lowX, lowY, highZ)]; float v010 = voxels[linearCoords(lowX, highY, lowZ)]; float v011 = voxels[linearCoords(lowX, highY, highZ)]; float v100 = voxels[linearCoords(highX, lowY, lowZ)]; float v101 = voxels[linearCoords(highX, lowY, highZ)]; float v110 = voxels[linearCoords(highX, highY, lowZ)]; float v111 = voxels[linearCoords(highX, highY, highZ)]; float v00 = interpolatorZ * v000 + (1.0 - interpolatorZ) * v001; float v01 = interpolatorZ * v010 + (1.0 - interpolatorZ) * v011; float v10 = interpolatorZ * v100 + (1.0 - interpolatorZ) * v101; float v11 = interpolatorZ * v110 + (1.0 - interpolatorZ) * v111; float v0 = interpolatorY * v00 + (1.0 - interpolatorY) * v01; float v1 = interpolatorY * v10 + (1.0 - interpolatorY) * v11; return interpolatorX * v0 + (1.0 - interpolatorX) * v1; } const Histogram* LocalErrorHistogramManager::getSpatialHistogram(unsigned int brickIndex) const { unsigned int innerNodeIndex = brickToInnerNodeIndex(brickIndex); if (innerNodeIndex < _numInnerNodes) { return &(_spatialHistograms[innerNodeIndex]); } else { return nullptr; } } const Histogram* LocalErrorHistogramManager::getTemporalHistogram(unsigned int brickIndex) const { unsigned int innerNodeIndex = brickToInnerNodeIndex(brickIndex); if (innerNodeIndex < _numInnerNodes) { return &(_temporalHistograms[innerNodeIndex]); } else { return nullptr; } } int LocalErrorHistogramManager::parentOffset(int offset, int base) const { if (offset == 0) { return -1; } int depth = floor(log(((base - 1) * offset + 1.0)) / log(base)); int firstInLevel = (pow(base, depth) - 1) / (base - 1); int inLevelOffset = offset - firstInLevel; int parentDepth = depth - 1; int firstInParentLevel = (pow(base, parentDepth) - 1) / (base - 1); int parentInLevelOffset = inLevelOffset / base; int parentOffset = firstInParentLevel + parentInLevelOffset; return parentOffset; } std::vector LocalErrorHistogramManager::readValues(unsigned int brickIndex) const { unsigned int paddedBrickDim = _tsp->paddedBrickDim(); unsigned int numBrickVals = paddedBrickDim * paddedBrickDim * paddedBrickDim; std::vector voxelValues(numBrickVals); std::streampos offset = _tsp->dataPosition() + static_cast(brickIndex*numBrickVals*sizeof(float)); _file->seekg(offset); _file->read(reinterpret_cast(&voxelValues[0]), static_cast(numBrickVals)*sizeof(float)); return voxelValues; } unsigned int LocalErrorHistogramManager::brickToInnerNodeIndex(unsigned int brickIndex) const { unsigned int numOtNodes = _tsp->numOTNodes(); unsigned int numBstLevels = _tsp->numBSTLevels(); unsigned int numInnerBstNodes = (pow(2, numBstLevels - 1) - 1) * numOtNodes; if (brickIndex < numInnerBstNodes) return brickIndex; unsigned int numOtLeaves = pow(8, _tsp->numOTLevels() - 1); unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves); unsigned int innerBstOffset = brickIndex - numInnerBstNodes; unsigned int rowIndex = innerBstOffset / numOtNodes; unsigned int indexInRow = innerBstOffset % numOtNodes; if (indexInRow >= numOtInnerNodes) return _numInnerNodes; unsigned int offset = rowIndex * numOtInnerNodes; unsigned int leavesOffset = offset + indexInRow; return numInnerBstNodes + leavesOffset; } unsigned int LocalErrorHistogramManager::innerNodeToBrickIndex(unsigned int innerNodeIndex) const { unsigned int numOtNodes = _tsp->numOTNodes(); unsigned int numBstLevels = _tsp->numBSTLevels(); unsigned int numInnerBstNodes = (pow(2, numBstLevels - 1) - 1) * numOtNodes; if (innerNodeIndex < numInnerBstNodes) return innerNodeIndex; unsigned int numOtLeaves = pow(8, _tsp->numOTLevels() - 1); unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves); unsigned int innerBstOffset = innerNodeIndex - numInnerBstNodes; unsigned int rowIndex = innerBstOffset / numOtInnerNodes; unsigned int indexInRow = innerBstOffset % numOtInnerNodes; unsigned int offset = rowIndex * numOtNodes; unsigned int leavesOffset = offset + indexInRow; return numInnerBstNodes + leavesOffset; } } // namespace openspace