/***************************************************************************************** * * * OpenSpace * * * * Copyright (c) 2014-2016 * * * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * * software and associated documentation files (the "Software"), to deal in the Software * * without restriction, including without limitation the rights to use, copy, modify, * * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to the following * * conditions: * * * * The above copyright notice and this permission notice shall be included in all copies * * or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************************/ // open space includes #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #define _ATMOSPHERE_DEBUG //#define _SAVE_ATMOSPHERE_TEXTURES namespace { const std::string _loggerCat = "RenderablePlanetAtmosphere"; const std::string keyFrame = "Frame"; const std::string keyGeometry = "Geometry"; const std::string keyDebug = "Debug"; const std::string keyRadius = "Radius"; const std::string keyShading = "PerformShading"; const std::string keyShadowGroup = "Shadow_Group"; const std::string keyShadowSource = "Source"; const std::string keyShadowCaster = "Caster"; const std::string keyAtmosphere = "Atmosphere"; const std::string keyAtmosphereRadius = "AtmoshereRadius"; const std::string keyPlanetRadius = "PlanetRadius"; const std::string keyAverageGroundReflectance = "PlanetAverageGroundReflectance"; const std::string keyRayleigh = "Rayleigh"; const std::string keyRayleighHeightScale = "H_R"; const std::string keyMie = "Mie"; const std::string keyMieHeightScale = "H_M"; const std::string keyMiePhaseConstant = "G"; const std::string keyBody = "Body"; const std::string keyTextureScale = "PreCalculatedTextureScale"; const std::string keySaveTextures = "SaveCalculatedTextures"; } namespace openspace { RenderablePlanetAtmosphere::RenderablePlanetAtmosphere(const ghoul::Dictionary& dictionary) : Renderable(dictionary) , _colorTexturePath("colorTexture", "Color Texture") , _nightTexturePath("nightTexture", "Night Texture") , _heightMapTexturePath("heightMap", "Heightmap Texture") , _heightExaggeration("heightExaggeration", "Height Exaggeration", 1.f, 0.f, 10.f) , _programObject(nullptr) , _texture(nullptr) , _nightTexture(nullptr) , _heightMapTexture(nullptr) , _geometry(nullptr) , _performShading("performShading", "Perform Shading", true) , _rotation("rotation", "Rotation", 0, 0, 360) , _alpha(1.f) , _planetRadius(0.f) , _atmosphereRadius(0.f) , _atmospherePlanetRadius(0.f) , _planetAverageGroundReflectance(0.f) , _rayleighHeightScale(0.f) , _mieHeightScale(0.f) , _miePhaseConstant(0.f) , _mieExtinctionCoeff(glm::vec3(0.f)) , _rayleighScatteringCoeff(glm::vec3(0.f)) , _mieScatteringCoeff(glm::vec3(0.f)) , _sunRadianceIntensity(50.0f) , _hdrConstant(0.4f) , _atmosphereEnabled(false) , _hasNightTexture(false) , _hasHeightTexture(false) , _shadowEnabled(false) , _atmosphereHeightP("atmmosphereHeight", "Atmosphere Height (KM)", 60.0f, 0.1f, 1000.0f) , _groundAverageReflectanceP("averageGroundReflectance", "Average Ground Reflectance (%)", 0.1f, 0.0f, 1.0f) , _rayleighHeightScaleP("rayleighHeightScale", "Rayleigh Height Scale (KM)", 8.0f, 0.1f, 20.0f) , _rayleighScatteringCoeffXP("rayleighScatteringCoeffX", "Rayleigh Scattering Coeff X (x10e-3)", 1.0f, 0.01f, 100.0f) , _rayleighScatteringCoeffYP("rayleighScatteringCoeffY", "Rayleigh Scattering Coeff Y (x10e-3)", 1.0f, 0.01f, 100.0f) , _rayleighScatteringCoeffZP("rayleighScatteringCoeffZ", "Rayleigh Scattering Coeff Z (x10e-3)", 1.0f, 0.01f, 100.0f) , _mieHeightScaleP("mieHeightScale", "Mie Height Scale (KM)", 1.2f, 0.1f, 20.0f) , _mieScatteringCoefficientP("mieScatteringCoefficient", "Mie Scattering Coefficient (x10e-3)", 4.0f, 0.01f, 1000.0f) , _mieScatteringExtinctionPropCoefficientP("mieScatteringExtinctionPropCoefficient", "Mie Scattering/Extinction Proportion Coefficient (%)", 0.9f, 0.01f, 1.0f) , _mieAsymmetricFactorGP("mieAsymmetricFactorG", "Mie Asymmetric Factor G", 0.85f, -1.0f, 1.0f) , _sunIntensityP("sunIntensity", "Sun Intensity", 50.0f, 0.1f, 1000.0f) , _hdrExpositionP("hdrExposition", "HDR", 0.4f, 0.01f, 5.0f) , _saveCalculationsToTexture(false) , _preCalculatedTexturesScale(1.0) { std::string name; bool success = dictionary.getValue(SceneGraphNode::KeyName, name); ghoul_assert( success, std::string("RenderablePlanetAtmosphere need the '") + SceneGraphNode::KeyName + "' be specified" ); //======================================================= //======== Reads Geometry Entries in mod file ============= //======================================================= ghoul::Dictionary geometryDictionary; success = dictionary.getValue(keyGeometry, geometryDictionary); glm::dvec3 radius; bool accutareRadius = false; try { SpiceManager::ref().getValue(name, "RADII", radius); accutareRadius = true; } catch (const SpiceManager::SpiceException& e) { accutareRadius = false; } if (accutareRadius) { radius *= 1000.0; // Spice gives radii in KM. std::swap(radius[1], radius[2]); // z is equivalent to y in our coordinate system geometryDictionary.setValue(keyRadius, radius); } if (success) { _geometry = planetgeometry::PlanetGeometry::createFromDictionary(geometryDictionary); float planetRadius; if (accutareRadius) { _planetRadius = (radius[0] + radius[1] + radius[2]) / 3.0; } else if (geometryDictionary.getValue(keyRadius, planetRadius)) { _planetRadius = planetRadius; } else { LWARNING("No Radius value specified for " << name << " planet."); } } //=============================================================== //======== Reads Body and Frame Entries in mod file ============= //=============================================================== dictionary.getValue(keyFrame, _frame); dictionary.getValue(keyBody, _target); //============================================================ //======== Reads the Texture Entries in mod file ============= //============================================================ // TODO: textures need to be replaced by a good system similar to the geometry as soon // as the requirements are fixed (ab) std::string texturePath = ""; success = dictionary.getValue("Textures.Color", texturePath); if (success) _colorTexturePath = absPath(texturePath); std::string nightTexturePath = ""; dictionary.getValue("Textures.Night", nightTexturePath); if (nightTexturePath != "") { _hasNightTexture = true; _nightTexturePath = absPath(nightTexturePath); } std::string heightMapTexturePath = ""; dictionary.getValue("Textures.Height", heightMapTexturePath); if (heightMapTexturePath != "") { _hasHeightTexture = true; _heightMapTexturePath = absPath(heightMapTexturePath); } //======================================================= //=========== Adding Textures as Properties ============= //======================================================= addPropertySubOwner(_geometry.get()); addProperty(_colorTexturePath); _colorTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this)); addProperty(_nightTexturePath); _nightTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this)); addProperty(_heightMapTexturePath); _heightMapTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this)); addProperty(_heightExaggeration); //========================================================= //======== Shading and Rotation as Properties ============= //========================================================= if (dictionary.hasKeyAndValue(keyShading)) { bool shading; dictionary.getValue(keyShading, shading); _performShading = shading; } addProperty(_performShading); // Mainly for debugging purposes @AA addProperty(_rotation); //================================================================ //======== Reads Shadow (Eclipses) Entries in mod file =========== //================================================================ ghoul::Dictionary shadowDictionary; success = dictionary.getValue(keyShadowGroup, shadowDictionary); bool disableShadows = false; if (success) { std::vector< std::pair > sourceArray; unsigned int sourceCounter = 1; while (success) { std::string sourceName; std::stringstream ss; ss << keyShadowSource << sourceCounter << ".Name"; success = shadowDictionary.getValue(ss.str(), sourceName); if (success) { float sourceRadius; ss.str(std::string()); ss << keyShadowSource << sourceCounter << ".Radius"; success = shadowDictionary.getValue(ss.str(), sourceRadius); if (success) { sourceArray.push_back(std::pair< std::string, float>( sourceName, sourceRadius)); } else { LWARNING("No Radius value expecified for Shadow Source Name " << sourceName << " from " << name << " planet.\nDisabling shadows for this planet."); disableShadows = true; break; } } sourceCounter++; } if (!disableShadows && !sourceArray.empty()) { success = true; std::vector< std::pair > casterArray; unsigned int casterCounter = 1; while (success) { std::string casterName; std::stringstream ss; ss << keyShadowCaster << casterCounter << ".Name"; success = shadowDictionary.getValue(ss.str(), casterName); if (success) { float casterRadius; ss.str(std::string()); ss << keyShadowCaster << casterCounter << ".Radius"; success = shadowDictionary.getValue(ss.str(), casterRadius); if (success) { casterArray.push_back(std::pair< std::string, float>( casterName, casterRadius)); } else { LWARNING("No Radius value expecified for Shadow Caster Name " << casterName << " from " << name << " planet.\nDisabling shadows for this planet."); disableShadows = true; break; } } casterCounter++; } if (!disableShadows && (!sourceArray.empty() && !casterArray.empty())) { for (const auto & source : sourceArray) for (const auto & caster : casterArray) { ShadowConf sc; sc.source = source; sc.caster = caster; _shadowConfArray.push_back(sc); } _shadowEnabled = true; } } } //================================================================ //========== Reads Atmosphere Entries from mod file ============== //================================================================ bool errorReadingAtmosphereData = false; ghoul::Dictionary atmosphereDictionary; success = dictionary.getValue(keyAtmosphere, atmosphereDictionary); if (success) { if (!atmosphereDictionary.getValue(keyAtmosphereRadius, _atmosphereRadius)) { errorReadingAtmosphereData = true; LWARNING("No Atmosphere Radius value expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } if (!atmosphereDictionary.getValue(keyPlanetRadius, _atmospherePlanetRadius)) { errorReadingAtmosphereData = true; LWARNING("No Planet Radius value expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } if (!atmosphereDictionary.getValue(keyAverageGroundReflectance, _planetAverageGroundReflectance)) { errorReadingAtmosphereData = true; LWARNING("No Average Atmosphere Ground Reflectance value expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } ghoul::Dictionary rayleighDictionary; success = atmosphereDictionary.getValue(keyRayleigh, rayleighDictionary); if (success) { // Not using right now. glm::vec3 rayleighWavelengths; success = rayleighDictionary.getValue("Coefficients.Wavelengths", rayleighWavelengths); if (!rayleighDictionary.getValue("Coefficients.Scattering", _rayleighScatteringCoeff)) { errorReadingAtmosphereData = true; LWARNING("No Rayleigh Scattering parameters expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } if (!rayleighDictionary.getValue(keyRayleighHeightScale, _rayleighHeightScale)) { errorReadingAtmosphereData = true; LWARNING("No Rayleigh Height Scale value expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } } else { errorReadingAtmosphereData = true; LWARNING("No Rayleigh parameters expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } ghoul::Dictionary mieDictionary; success = atmosphereDictionary.getValue(keyMie, mieDictionary); if (success) { if (!mieDictionary.getValue(keyMieHeightScale, _mieHeightScale)) { errorReadingAtmosphereData = true; LWARNING("No Mie Height Scale value expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } if (!mieDictionary.getValue("Coefficients.Scattering", _mieScatteringCoeff)) { errorReadingAtmosphereData = true; LWARNING("No Mie Scattering parameters expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } if (!mieDictionary.getValue("Coefficients.Extinction", _mieExtinctionCoeff)) { errorReadingAtmosphereData = true; LWARNING("No Mie Extinction parameters expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } if (!mieDictionary.getValue(keyMiePhaseConstant, _miePhaseConstant)) { errorReadingAtmosphereData = true; LWARNING("No Mie Phase Constant value expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } } else { errorReadingAtmosphereData = true; LWARNING("No Mie parameters expecified for Atmosphere Effects of " << name << " planet.\nDisabling atmosphere effects for this planet."); } ghoul::Dictionary debugDictionary; success = atmosphereDictionary.getValue(keyDebug, debugDictionary); if (success) { if (debugDictionary.getValue(keyTextureScale, _preCalculatedTexturesScale)) { LDEBUG("Atmosphere Texture Scaled to " << _preCalculatedTexturesScale); } if (debugDictionary.getValue(keySaveTextures, _saveCalculationsToTexture)) { LDEBUG("Saving Precalculated Atmosphere Textures."); } } if (!errorReadingAtmosphereData) { _atmosphereEnabled = true; //======================================================== //============== Atmosphere Properties =================== //======================================================== _atmosphereHeightP.set(_atmosphereRadius - _atmospherePlanetRadius); _atmosphereHeightP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_atmosphereHeightP); _groundAverageReflectanceP.set(_planetAverageGroundReflectance); _groundAverageReflectanceP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_groundAverageReflectanceP); _rayleighHeightScaleP.set(_rayleighHeightScale); _rayleighHeightScaleP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_rayleighHeightScaleP); _rayleighScatteringCoeffXP.set(_rayleighScatteringCoeff.x * 1000.0f); _rayleighScatteringCoeffXP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_rayleighScatteringCoeffXP); _rayleighScatteringCoeffYP.set(_rayleighScatteringCoeff.y * 1000.0f); _rayleighScatteringCoeffYP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_rayleighScatteringCoeffYP); _rayleighScatteringCoeffZP.set(_rayleighScatteringCoeff.z * 1000.0f); _rayleighScatteringCoeffZP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_rayleighScatteringCoeffZP); _mieHeightScaleP.set(_mieHeightScale); _mieHeightScaleP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_mieHeightScaleP); _mieScatteringCoefficientP.set(_mieScatteringCoeff.r * 1000.0f); _mieScatteringCoefficientP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_mieScatteringCoefficientP); _mieScatteringExtinctionPropCoefficientP.set(_mieScatteringCoeff.r / _mieExtinctionCoeff.r); _mieScatteringExtinctionPropCoefficientP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_mieScatteringExtinctionPropCoefficientP); _mieAsymmetricFactorGP.set(_miePhaseConstant); _mieAsymmetricFactorGP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_mieAsymmetricFactorGP); _sunIntensityP.set(_sunRadianceIntensity); _sunIntensityP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_sunIntensityP); _hdrExpositionP.set(_hdrConstant); _hdrExpositionP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this)); addProperty(_hdrExpositionP); } } } RenderablePlanetAtmosphere::~RenderablePlanetAtmosphere() { } bool RenderablePlanetAtmosphere::initialize() { RenderEngine& renderEngine = OsEng.renderEngine(); GLenum err; while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Checking System State before initialization. OpenGL error: " << errString); } //=================================================================== //=========== Defines the shading program to be executed ============ //=================================================================== if (_programObject == nullptr && _shadowEnabled && _hasNightTexture) { // shadow program _programObject = renderEngine.buildRenderProgram( "shadowNightProgram", "${MODULE_ATMOSPHERE}/shaders/shadow_nighttexture_vs.glsl", "${MODULE_ATMOSPHERE}/shaders/shadow_nighttexture_fs.glsl"); if (!_programObject) return false; std::cout << "-- Running ShadowNightProgram --" << std::endl; } else if (_programObject == nullptr && _shadowEnabled) { // shadow program _programObject = renderEngine.buildRenderProgram( "shadowProgram", "${MODULE_ATMOSPHERE}/shaders/shadow_vs.glsl", "${MODULE_ATMOSPHERE}/shaders/shadow_fs.glsl"); if (!_programObject) return false; std::cout << "-- Running ShadowProgram --" << std::endl; } else if (_programObject == nullptr && _hasNightTexture) { // Night texture program _programObject = renderEngine.buildRenderProgram( "nightTextureProgram", "${MODULE_ATMOSPHERE}/shaders/nighttexture_vs.glsl", "${MODULE_ATMOSPHERE}/shaders/nighttexture_fs.glsl"); if (!_programObject) return false; std::cout << "-- Running NightTextureProgram --" << std::endl; } else if (_programObject == nullptr) { // pscstandard _programObject = renderEngine.buildRenderProgram( "pscstandard", "${MODULE_ATMOSPHERE}/shaders/renderableplanet_vs.glsl", "${MODULE_ATMOSPHERE}/shaders/renderableplanet_fs.glsl"); if (!_programObject) return false; std::cout << "-- Running PSCStandard --" << std::endl; } using IgnoreError = ghoul::opengl::ProgramObject::IgnoreError; _programObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes); _programObject->setIgnoreUniformLocationError(IgnoreError::Yes); while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error after loading shading programs. OpenGL error: " << errString); } //======================================================================== //======== Initialize the current geometry (SimpleSphereGeometry) ======== //======================================================================== _geometry->initialize(this); // Deactivate any previously activated shader program. _programObject->deactivate(); //=================================================================== //=========== Load textures defined in mod file to GPU ============== //=================================================================== loadTexture(); while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error loading textures. OpenGL error: " << errString); } // Testing Deferredcaster _deferredcaster = std::make_unique(); if (_deferredcaster) { _deferredcaster->setAtmosphereRadius(_atmosphereRadius); _deferredcaster->setPlanetRadius(_atmospherePlanetRadius); _deferredcaster->setPlanetAverageGroundReflectance(_planetAverageGroundReflectance); _deferredcaster->setRayleighHeightScale(_rayleighHeightScale); _deferredcaster->setMieHeightScale(_mieHeightScale); _deferredcaster->setMiePhaseConstant(_miePhaseConstant); _deferredcaster->setSunRadianceIntensity(_sunRadianceIntensity); _deferredcaster->setHDRConstant(_hdrConstant); _deferredcaster->setRayleighScatteringCoefficients(_rayleighScatteringCoeff); _deferredcaster->setMieScatteringCoefficients(_mieScatteringCoeff); _deferredcaster->setMieExtinctionCoefficients(_mieExtinctionCoeff); _deferredcaster->setRenderableClass(AtmosphereDeferredcaster::RenderablePlanet); _deferredcaster->setPrecalculationTextureScale(_preCalculatedTexturesScale); if (_saveCalculationsToTexture) _deferredcaster->enablePrecalculationTexturesSaving(); _deferredcaster->initialize(); } OsEng.renderEngine().deferredcasterManager().attachDeferredcaster(*_deferredcaster.get()); std::function onChange = [&](bool enabled) { if (enabled) { OsEng.renderEngine().deferredcasterManager().attachDeferredcaster(*_deferredcaster.get()); } else { OsEng.renderEngine().deferredcasterManager().detachDeferredcaster(*_deferredcaster.get()); } }; onEnabledChange(onChange); return isReady(); } bool RenderablePlanetAtmosphere::deinitialize() { if (_geometry) { _geometry->deinitialize(); _geometry = nullptr; } RenderEngine& renderEngine = OsEng.renderEngine(); if (_programObject) { renderEngine.removeRenderProgram(_programObject); _programObject = nullptr; } _geometry = nullptr; _texture = nullptr; _nightTexture = nullptr; // Testing Deferredcaster if (_deferredcaster) { OsEng.renderEngine().deferredcasterManager().detachDeferredcaster(*_deferredcaster.get()); _deferredcaster = nullptr; } return true; } bool RenderablePlanetAtmosphere::isReady() const { bool ready = true; ready &= (_programObject != nullptr); ready &= (_texture != nullptr); ready &= (_geometry != nullptr); return ready; } void RenderablePlanetAtmosphere::computeModelTransformMatrix(glm::mat4 * modelTransform) { // scale the planet to appropriate size since the planet is a unit sphere *modelTransform = glm::mat4(1); //earth needs to be rotated for that to work. glm::mat4 rot = glm::rotate(*modelTransform, static_cast(M_PI_2), glm::vec3(1, 0, 0)); glm::mat4 roty = glm::rotate(*modelTransform, static_cast(M_PI_2), glm::vec3(0, -1, 0)); glm::mat4 rotProp = glm::rotate(*modelTransform, glm::radians(static_cast(_rotation)), glm::vec3(0, 1, 0)); // _stateMatrix is the Matrix transformation from _frame coordinate system (Earth in this case) // to "GALATIC" coordinate system. for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { (*modelTransform)[i][j] = static_cast(_stateMatrix[i][j]); } } *modelTransform = *modelTransform * rot * roty * rotProp; } void RenderablePlanetAtmosphere::computeModelTransformMatrix(glm::dmat4 * modelTransform) { // scale the planet to appropriate size since the planet is a unit sphere *modelTransform = glm::dmat4(1); //earth needs to be rotated for that to work. glm::dmat4 rot = glm::rotate(*modelTransform, static_cast(M_PI_2), glm::dvec3(1, 0, 0)); glm::dmat4 roty = glm::rotate(*modelTransform, static_cast(M_PI_2), glm::dvec3(0, -1, 0)); glm::dmat4 rotProp = glm::rotate(*modelTransform, glm::radians(static_cast(_rotation)), glm::dvec3(0, 1, 0)); // _stateMatrix is the Matrix transformation from _frame coordinate system (Earth in this case) // to "GALATIC" coordinate system. for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { (*modelTransform)[i][j] = _stateMatrix[i][j]; } } *modelTransform = *modelTransform * rot * roty * rotProp; } void RenderablePlanetAtmosphere::render(const RenderData& data, RendererTasks& tasks) { // activate shader _programObject->activate(); // scale the planet to appropriate size since the planet is a unit sphere glm::mat4 transform = glm::mat4(1); //earth needs to be rotated for that to work. computeModelTransformMatrix(&transform); // setup the data to the shader // double lt; // glm::dvec3 sunPosFromPlanet = // SpiceManager::ref().targetPosition("SUN", _target, "GALACTIC", {}, _time, lt); // sunPosFromPlanet *= 1000.0; // from Km to m // psc sunPosFromPlanetPSC = PowerScaledCoordinate::CreatePowerScaledCoordinate( // sunPosFromPlanet.x, sunPosFromPlanet.y, sunPosFromPlanet.z); // glm::dvec3 planetPosFromSun = // SpiceManager::ref().targetPosition(_target, "SUN", "GALACTIC", {}, _time, lt); // psc planetPosFronSunPSC = PowerScaledCoordinate::CreatePowerScaledCoordinate( // planetPosFromSun.x, planetPosFromSun.y, planetPosFromSun.z); // // Camera direction (vector) // glm::vec3 cam_dir = glm::normalize(data.camera.position().vec3() - planetPosFronSunPSC.vec3()); _programObject->setUniform("transparency", _alpha); _programObject->setUniform("ViewProjection", data.camera.viewProjectionMatrix()); _programObject->setUniform("ModelTransform", transform); // Normal Transformation glm::mat4 translateObjTransf = glm::translate(glm::mat4(1.0), data.position.vec3()); glm::mat4 translateCamTransf = glm::translate(glm::mat4(1.0), -data.camera.position().vec3()); // The following scale comes from PSC transformations. float scaleFactor = data.camera.scaling().x * powf(10.0, data.camera.scaling().y); glm::mat4 scaleCamTransf = glm::scale(glm::mat4(1.0), glm::vec3(scaleFactor)); glm::mat4 ModelViewTransf = data.camera.viewMatrix() * scaleCamTransf * translateCamTransf * translateObjTransf * transform; if (_atmosphereEnabled) _programObject->setUniform("NormalTransform", glm::transpose(glm::inverse(ModelViewTransf))); //=== Sets campos, objpos, camrot and scaling in PSC coords for PSC calc in shader file === setPscUniforms(*_programObject.get(), data.camera, data.position); _programObject->setUniform("_performShading", _performShading); _programObject->setUniform("_hasHeightMap", _hasHeightTexture); _programObject->setUniform("_heightExaggeration", _heightExaggeration); // Bind texture ghoul::opengl::TextureUnit dayUnit; dayUnit.activate(); _texture->bind(); _programObject->setUniform("texture1", dayUnit); // Bind possible night texture if (_hasNightTexture) { ghoul::opengl::TextureUnit nightUnit; nightUnit.activate(); _nightTexture->bind(); _programObject->setUniform("nightTex", nightUnit); } if (_hasHeightTexture) { ghoul::opengl::TextureUnit heightUnit; heightUnit.activate(); _heightMapTexture->bind(); _programObject->setUniform("heightTex", heightUnit); } glEnable(GL_CULL_FACE); glCullFace(GL_BACK); //============================================================================= //============= Eclipse Shadow Calculations and Uniforms Loading ============== //============================================================================= // TODO: Move Calculations to VIEW SPACE (let's avoid precision problems...) double lt; if (!_shadowConfArray.empty()) { std::vector shadowDataArray; shadowDataArray.reserve(_shadowConfArray.size()); for (const auto & shadowConf : _shadowConfArray) { // TO REMEMBER: all distances and lengths in world coordinates are in meters!!! We need to move this to view space... // Getting source and caster: glm::dvec3 sourcePos = SpiceManager::ref().targetPosition(shadowConf.source.first, "SUN", "GALACTIC", {}, _time, lt); sourcePos *= 1000.0; // converting to meters glm::dvec3 casterPos = SpiceManager::ref().targetPosition(shadowConf.caster.first, "SUN", "GALACTIC", {}, _time, lt); casterPos *= 1000.0; // converting to meters psc caster_pos = PowerScaledCoordinate::CreatePowerScaledCoordinate(casterPos.x, casterPos.y, casterPos.z); // First we determine if the caster is shadowing the current planet (all calculations in World Coordinates): glm::vec3 planetCasterVec = (caster_pos - data.position).vec3(); glm::vec3 sourceCasterVec = glm::vec3(casterPos - sourcePos); float sc_length = glm::length(sourceCasterVec); glm::vec3 planetCaster_proj = (glm::dot(planetCasterVec, sourceCasterVec) / (sc_length*sc_length)) * sourceCasterVec; float d_test = glm::length(planetCasterVec - planetCaster_proj); float xp_test = shadowConf.caster.second * sc_length / (shadowConf.source.second + shadowConf.caster.second); float rp_test = shadowConf.caster.second * (glm::length(planetCaster_proj) + xp_test) / xp_test; float casterDistSun = glm::length(casterPos); float planetDistSun = glm::length(data.position.vec3()); ShadowRenderingStruct shadowData; shadowData.isShadowing = false; if (((d_test - rp_test) < _planetRadius) && (casterDistSun < planetDistSun)) { // The current caster is shadowing the current planet shadowData.isShadowing = true; shadowData.rs = shadowConf.source.second; shadowData.rc = shadowConf.caster.second; shadowData.sourceCasterVec = sourceCasterVec; shadowData.xp = xp_test; shadowData.xu = shadowData.rc * sc_length / (shadowData.rs - shadowData.rc); shadowData.casterPositionVec = glm::vec3(casterPos); } shadowDataArray.push_back(shadowData); } const std::string uniformVarName("shadowDataArray["); unsigned int counter = 0; for (const auto & sd : shadowDataArray) { std::stringstream ss; ss << uniformVarName << counter << "].isShadowing"; _programObject->setUniform(ss.str(), sd.isShadowing); if (sd.isShadowing) { ss.str(std::string()); ss << uniformVarName << counter << "].xp"; _programObject->setUniform(ss.str(), sd.xp); ss.str(std::string()); ss << uniformVarName << counter << "].xu"; _programObject->setUniform(ss.str(), sd.xu); /*ss.str(std::string()); ss << uniformVarName << counter << "].rs"; _programObject->setUniform(ss.str(), sd.rs);*/ ss.str(std::string()); ss << uniformVarName << counter << "].rc"; _programObject->setUniform(ss.str(), sd.rc); ss.str(std::string()); ss << uniformVarName << counter << "].sourceCasterVec"; _programObject->setUniform(ss.str(), sd.sourceCasterVec); ss.str(std::string()); ss << uniformVarName << counter << "].casterPositionVec"; _programObject->setUniform(ss.str(), sd.casterPositionVec); } counter++; } } // render _geometry->render(); // disable shader _programObject->deactivate(); // Testing Deferredcaster DeferredcasterTask task{ _deferredcaster.get(), data }; tasks.deferredcasterTasks.push_back(task); } void RenderablePlanetAtmosphere::update(const UpdateData& data) { // set spice-orientation in accordance to timestamp //_stateMatrix = SpiceManager::ref().positionTransformMatrix(_frame, "GALACTIC", data.time); _stateMatrix = data.modelTransform.rotation; _time = data.time.j2000Seconds(); if (_programObject && _programObject->isDirty()) _programObject->rebuildFromFile(); if (_deferredcaster) { _deferredcaster->setTime(data.time.j2000Seconds()); glm::dmat4 modelTransform; computeModelTransformMatrix(&modelTransform); _deferredcaster->setModelTransform(modelTransform); } } void RenderablePlanetAtmosphere::loadTexture() { _texture = nullptr; if (_colorTexturePath.value() != "") { _texture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_colorTexturePath))); if (_texture) { LDEBUG("Loaded texture from '" << _colorTexturePath << "'"); _texture->uploadTexture(); // Textures of planets looks much smoother with AnisotropicMipMap rather than linear // TODO: AnisotropicMipMap crashes on ATI cards ---abock //_texture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap); _texture->setFilter(ghoul::opengl::Texture::FilterMode::Linear); } } GLenum err; while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error after loading color texture. OpenGL error: " << errString); } if (_hasNightTexture) { _nightTexture = nullptr; if (_nightTexturePath.value() != "") { _nightTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_nightTexturePath))); if (_nightTexture) { LDEBUG("Loaded texture from '" << _nightTexturePath << "'"); _nightTexture->uploadTexture(); _nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear); //_nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap); } } } while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error after loading night texture. OpenGL error: " << errString); } if (_hasHeightTexture) { _heightMapTexture = nullptr; if (_heightMapTexturePath.value() != "") { _heightMapTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_heightMapTexturePath))); if (_heightMapTexture) { LDEBUG("Loaded texture from '" << _heightMapTexturePath << "'"); _heightMapTexture->uploadTexture(); _heightMapTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear); //_nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap); } } } while ((err = glGetError()) != GL_NO_ERROR) { const GLubyte * errString = gluErrorString(err); LERROR("Error after loading height texture. OpenGL error: " << errString); } } void RenderablePlanetAtmosphere::updateAtmosphereParameters() { bool executeComputation = true; if (_sunRadianceIntensity != _sunIntensityP || _hdrConstant != _hdrExpositionP) executeComputation = false; _atmosphereRadius = _atmospherePlanetRadius + _atmosphereHeightP; _planetAverageGroundReflectance = _groundAverageReflectanceP; _rayleighHeightScale = _rayleighHeightScaleP; _rayleighScatteringCoeff = glm::vec3(_rayleighScatteringCoeffXP * 0.001f, _rayleighScatteringCoeffYP * 0.001f, _rayleighScatteringCoeffZP * 0.001f); _mieHeightScale = _mieHeightScaleP; _mieScatteringCoeff = glm::vec3(_mieScatteringCoefficientP * 0.001f); _mieExtinctionCoeff = _mieScatteringCoeff * (1.0f / static_cast(_mieScatteringExtinctionPropCoefficientP)); _miePhaseConstant = _mieAsymmetricFactorGP; _sunRadianceIntensity = _sunIntensityP; _hdrConstant = _hdrExpositionP; if (_deferredcaster) { _deferredcaster->setAtmosphereRadius(_atmosphereRadius); _deferredcaster->setPlanetRadius(_atmospherePlanetRadius); _deferredcaster->setPlanetAverageGroundReflectance(_planetAverageGroundReflectance); _deferredcaster->setRayleighHeightScale(_rayleighHeightScale); _deferredcaster->setMieHeightScale(_mieHeightScale); _deferredcaster->setMiePhaseConstant(_miePhaseConstant); _deferredcaster->setSunRadianceIntensity(_sunRadianceIntensity); _deferredcaster->setHDRConstant(_hdrConstant); _deferredcaster->setRayleighScatteringCoefficients(_rayleighScatteringCoeff); _deferredcaster->setMieScatteringCoefficients(_mieScatteringCoeff); _deferredcaster->setMieExtinctionCoefficients(_mieExtinctionCoeff); _deferredcaster->setRenderableClass(AtmosphereDeferredcaster::RenderablePlanet); if (executeComputation) _deferredcaster->preCalculateAtmosphereParam(); } } void RenderablePlanetAtmosphere::checkFrameBufferState(const std::string & codePosition) const { if (glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { LERROR("Framework not built. " + codePosition); GLenum fbErr = glCheckFramebufferStatus(GL_FRAMEBUFFER); switch (fbErr) { case GL_FRAMEBUFFER_UNDEFINED: LERROR("Indefined framebuffer."); break; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: LERROR("Incomplete, missing attachement."); break; case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: LERROR("Framebuffer doesn't have at least one image attached to it."); break; case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER: LERROR("Returned if the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE \ for any color attachment point(s) named by GL_DRAW_BUFFERi."); break; case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER: LERROR("Returned if GL_READ_BUFFER is not GL_NONE and the value of \ GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE for the color attachment point \ named by GL_READ_BUFFER."); break; case GL_FRAMEBUFFER_UNSUPPORTED: LERROR("Returned if the combination of internal formats of the attached images \ violates an implementation - dependent set of restrictions."); break; case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE: LERROR("Returned if the value of GL_RENDERBUFFER_SAMPLES is not the same for all \ attached renderbuffers; if the value of GL_TEXTURE_SAMPLES is the not same for all \ attached textures; or , if the attached images are a mix of renderbuffers and textures, \ the value of GL_RENDERBUFFER_SAMPLES does not match the value of GL_TEXTURE_SAMPLES."); LERROR("Returned if the value of GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not the same \ for all attached textures; or , if the attached images are a mix of renderbuffers and \ textures, the value of GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not GL_TRUE for all attached textures."); break; case GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS: LERROR("Returned if any framebuffer attachment is layered, and any populated attachment \ is not layered, or if all populated color attachments are not from textures of the same target."); break; default: LDEBUG("No error found checking framebuffer: " + codePosition); break; } } } } // namespace openspace