/* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions : The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include namespace { std::chrono::milliseconds TimeLimit(200); double TOL = 1e-30; // smallest value allowed in cholesky_decomp() } // set parameters required by levmarq() to default values void levmarq_init(LMstat* lmstat) { lmstat->verbose = false; lmstat->max_it = 3000; lmstat->init_lambda = 1e-6; lmstat->up_factor = 10; lmstat->down_factor = 10; lmstat->target_derr = 1e-12; } /* perform least-squares minimization using the Levenberg-Marquardt algorithm. The arguments are as follows: npar number of parameters par array of parameters to be varied ny number of measurements to be fit y array of measurements dysq array of error in measurements, squared (set dysq=NULL for unweighted least-squares) func function to be fit grad gradient of "func" with respect to the input parameters fdata pointer to any additional data required by the function lmstat pointer to the "status" structure, where minimization parameters are set and the final status is returned. Before calling levmarq, several of the parameters in lmstat must be set. For default values, call levmarq_init(lmstat). */ bool levmarq(int npar, double *par, int ny, double *dysq, double (*func)(double *, int, void *, LMstat*), void (*grad)(double *, double *, int, void *, LMstat*), void *fdata, LMstat *lmstat) { int x, i, j, it, nit, ill; bool verbose; std::string data; double lambda, up, down, mult, weight, err, newerr, derr, target_derr; // allocate the arrays double** h = new double*[npar]; double** ch = new double*[npar]; for (int i = 0; i < npar; i++) { h[i] = new double[npar]; ch[i] = new double[npar]; } double* g = new double[npar]; double* d = new double[npar]; double* delta = new double[npar]; double* newpar = new double[npar]; defer { // deallocate the arrays for (i = 0; i < npar; i++) { delete[] h[i]; delete[] ch[i]; } delete[] h; delete[] ch; delete[] g; delete[] d; delete[] delta; delete[] newpar; }; verbose = lmstat->verbose; nit = lmstat->max_it; lambda = lmstat->init_lambda; up = lmstat->up_factor; down = 1/lmstat->down_factor; target_derr = lmstat->target_derr; weight = 1; derr = newerr = 0; // to avoid compiler warnings if (verbose) { std::ostringstream qs, gs, ds, ps, oss; for (i = 0; i < npar; ++i) { qs << "q" << i; gs << "g" << i; ds << "d" << i; if (i + 1 < npar) { qs << ","; gs << ","; ds << ","; } } for (i = 0; i < ny; ++i) { for (j = 0; j < 2; ++j) { std::string s = (j == 0) ? "x" : "y"; ps << "p" << i << s; if (j + 1 < ny) { ps << ","; } } if (i + 1 < ny) { ps << ","; } } oss << "it,err,derr," << qs.str() << "," << gs.str() << "," << ds.str() << "," << ps.str() << "\n"; data = oss.str(); } // calculate the initial error ("chi-squared") lmstat->pos.clear(); err = error_func(par, ny, dysq, func, fdata, lmstat); std::chrono::system_clock::time_point start = std::chrono::system_clock::now(); // main iteration for (it = 0; it < nit; it++) { std::chrono::system_clock::time_point now = std::chrono::system_clock::now(); if (now - start > TimeLimit) { LDEBUGC("Touch Levmarq", "Bail out due to time limit!"); return false; } // calculate the approximation to the Hessian and the "derivative" d for (i = 0; i < npar; i++) { d[i] = 0; for (j = 0; j <= i; j++) { h[i][j] = 0; } } for (x = 0; x < ny; x++) { if (dysq) { weight = 1 / dysq[x]; // for weighted least-squares } grad(g, par, x, fdata, lmstat); for (i = 0; i < npar; i++) { d[i] += (0.0 - func(par, x, fdata, lmstat)) * g[i] * weight; //(y[x] - func(par, x, fdata)) * g[i] * weight; for (j = 0; j <= i; j++) { h[i][j] += g[i] * g[j] * weight; } } } // make a step "delta." If the step is rejected, increase lambda and try again mult = 1 + lambda; ill = 1; // ill-conditioned? while (ill && (it < nit)) { for (i = 0; i < npar; i++) { h[i][i] = h[i][i] * mult; } ill = cholesky_decomp(npar, ch, h); if (!ill) { solve_axb_cholesky(npar, ch, delta, d); for (i = 0; i < npar; i++) { newpar[i] = par[i] + delta[i]; } lmstat->pos.clear(); newerr = error_func(newpar, ny, dysq, func, fdata, lmstat); derr = newerr - err; ill = (derr > 0); } if (verbose) { // store iteration, error, gradient, step /*printf("it = %4d, lambda = %10g, err = %10g, derr = %10g (%d)\n", it, lambda, err, derr, !(newerr > err)); for (int i = 0; i < npar; ++i) { printf("g[%d] = %g, ", i, g[i]); } printf("\n");*/ std::ostringstream gString, qString, dString, pString, os; for (i = 0; i < npar; ++i) { gString << g[i]; qString << par[i]; dString << d[i]; if (i + 1 < npar) { gString << ","; qString << ","; dString << ","; } } for (i = 0; i < ny; ++i) { pString << lmstat->pos.at(i).x << "," << lmstat->pos.at(i).y; if (i + 1 < ny) { pString << ","; } } os << it << "," << err << "," << derr << "," << qString.str() << "," << gString.str() << "," << dString.str() << "," << pString.str() << "\n"; data.append(os.str()); } if (ill) { mult = (1 + lambda * up) / (1 + lambda); lambda *= up; it++; } } for (i = 0; i < npar; i++) { par[i] = newpar[i]; } err = newerr; lambda *= down; if ((!ill) && (-derr < target_derr)) { break; } } lmstat->final_it = it; lmstat->final_err = err; lmstat->final_derr = derr; lmstat->data = data; return (it != lmstat->max_it); } // calculate the error function (chi-squared) double error_func(double *par, int ny, double *dysq, double (*func)(double *, int, void *, LMstat*), void *fdata, LMstat *lmstat) { int x; double res, e = 0; for (x = 0; x < ny; x++) { res = func(par, x, fdata, lmstat); if (dysq) { // weighted least-squares e += res * res / dysq[x]; } else { e += res * res; } } return e; } // solve Ax=b for a symmetric positive-definite matrix A using the Cholesky decomposition A=LL^T, L is passed in "l", elements above the diagonal are ignored. void solve_axb_cholesky(int n, double** l, double* x, double* b) { // n = npar, l = ch, x = delta (solution), b = d (func(par, x, fdata) * g[i]); int i, j; double sum; // solve L*y = b for y (where x[] is used to store y) for (i = 0; i < n; i++) { sum = 0; for (j = 0; j < i; j++) { sum += l[i][j] * x[j]; } x[i] = (b[i] - sum) / l[i][i]; } // solve L^T*x = y for x (where x[] is used to store both y and x) for (i = n-1; i >= 0; i--) { sum = 0; for (j = i + 1; j < n; j++) { sum += l[j][i] * x[j]; } x[i] = (x[i] - sum) / l[i][i]; } } // symmetric, positive-definite matrix "a" and returns its (lower-triangular) Cholesky factor in "l", if l=a the decomposition is performed in place, elements above the diagonal are ignored. int cholesky_decomp(int n, double** l, double** a) { int i, j, k; double sum; for (i = 0; i < n; i++) { for (j = 0; j < i; j++) { sum = 0; for (k = 0; k < j; k++) { sum += l[i][k] * l[j][k]; } l[i][j] = (a[i][j] - sum) / l[j][j]; } sum = 0; for (k = 0; k < i; k++) { sum += l[i][k] * l[i][k]; } sum = a[i][i] - sum; if (sum < TOL) { return 1; // not positive-definite } l[i][i] = sqrt(sum); } return 0; }