Files
OpenSpace/modules/touch/ext/levmarq.cpp
2021-10-11 13:38:00 +02:00

312 lines
10 KiB
C++

/*
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files(the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions :
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
*/
#include <cstdio>
#include <cmath>
#include <chrono>
#include <modules/touch/ext/levmarq.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/misc/defer.h>
namespace {
std::chrono::milliseconds TimeLimit(200);
double TOL = 1e-30; // smallest value allowed in cholesky_decomp()
}
// set parameters required by levmarq() to default values
void levmarq_init(LMstat* lmstat) {
lmstat->verbose = false;
lmstat->max_it = 3000;
lmstat->init_lambda = 1e-6;
lmstat->up_factor = 10;
lmstat->down_factor = 10;
lmstat->target_derr = 1e-12;
}
/*
perform least-squares minimization using the Levenberg-Marquardt algorithm.
The arguments are as follows:
npar number of parameters
par array of parameters to be varied
ny number of measurements to be fit
y array of measurements
dysq array of error in measurements, squared
(set dysq=NULL for unweighted least-squares)
func function to be fit
grad gradient of "func" with respect to the input parameters
fdata pointer to any additional data required by the function
lmstat pointer to the "status" structure, where minimization parameters
are set and the final status is returned.
Before calling levmarq, several of the parameters in lmstat must be set.
For default values, call levmarq_init(lmstat).
*/
bool levmarq(int npar, double *par, int ny, double *dysq,
double (*func)(double *, int, void *, LMstat*),
void (*grad)(double *, double *, int, void *, LMstat*),
void *fdata, LMstat *lmstat) {
int x, j, it, nit, ill;
bool verbose;
std::string data;
double lambda, up, down, mult, weight, err, newerr, derr, target_derr;
// allocate the arrays
double** h = new double*[npar];
double** ch = new double*[npar];
for (int i = 0; i < npar; i++) {
h[i] = new double[npar];
ch[i] = new double[npar];
}
double* g = new double[npar];
double* d = new double[npar];
double* delta = new double[npar];
double* newpar = new double[npar];
defer {
// deallocate the arrays
for (int i = 0; i < npar; i++) {
delete[] h[i];
delete[] ch[i];
}
delete[] h;
delete[] ch;
delete[] g;
delete[] d;
delete[] delta;
delete[] newpar;
};
verbose = lmstat->verbose;
nit = lmstat->max_it;
lambda = lmstat->init_lambda;
up = lmstat->up_factor;
down = 1/lmstat->down_factor;
target_derr = lmstat->target_derr;
weight = 1;
derr = newerr = 0; // to avoid compiler warnings
if (verbose) {
std::ostringstream qs, gs, ds, ps, oss;
for (int i = 0; i < npar; ++i) {
qs << "q" << i;
gs << "g" << i;
ds << "d" << i;
if (i + 1 < npar) {
qs << ",";
gs << ",";
ds << ",";
}
}
for (int i = 0; i < ny; ++i) {
for (j = 0; j < 2; ++j) {
std::string s = (j == 0) ? "x" : "y";
ps << "p" << i << s;
if (j + 1 < ny) {
ps << ",";
}
}
if (i + 1 < ny) {
ps << ",";
}
}
oss << "it,err,derr," << qs.str() << "," << gs.str() << "," << ds.str() << "," << ps.str() << "\n";
data = oss.str();
}
// calculate the initial error ("chi-squared")
lmstat->pos.clear();
err = error_func(par, ny, dysq, func, fdata, lmstat);
std::chrono::system_clock::time_point start =
std::chrono::system_clock::now();
// main iteration
for (it = 0; it < nit; it++) {
std::chrono::system_clock::time_point now =
std::chrono::system_clock::now();
if (now - start > TimeLimit) {
LDEBUGC("Touch Levmarq", "Bail out due to time limit!");
return false;
}
// calculate the approximation to the Hessian and the "derivative" d
for (int i = 0; i < npar; i++) {
d[i] = 0;
for (j = 0; j <= i; j++) {
h[i][j] = 0;
}
}
for (x = 0; x < ny; x++) {
if (dysq) {
weight = 1 / dysq[x]; // for weighted least-squares
}
grad(g, par, x, fdata, lmstat);
for (int i = 0; i < npar; i++) {
d[i] += (0.0 - func(par, x, fdata, lmstat)) * g[i] * weight; //(y[x] - func(par, x, fdata)) * g[i] * weight;
for (j = 0; j <= i; j++) {
h[i][j] += g[i] * g[j] * weight;
}
}
}
// make a step "delta." If the step is rejected, increase lambda and try again
mult = 1 + lambda;
ill = 1; // ill-conditioned?
while (ill && (it < nit)) {
for (int i = 0; i < npar; i++) {
h[i][i] = h[i][i] * mult;
}
ill = cholesky_decomp(npar, ch, h);
if (!ill) {
solve_axb_cholesky(npar, ch, delta, d);
for (int i = 0; i < npar; i++) {
newpar[i] = par[i] + delta[i];
}
lmstat->pos.clear();
newerr = error_func(newpar, ny, dysq, func, fdata, lmstat);
derr = newerr - err;
ill = (derr > 0);
}
if (verbose) { // store iteration, error, gradient, step
/*printf("it = %4d, lambda = %10g, err = %10g, derr = %10g (%d)\n", it, lambda, err, derr, !(newerr > err));
for (int i = 0; i < npar; ++i) {
printf("g[%d] = %g, ", i, g[i]);
}
printf("\n");*/
std::ostringstream gString, qString, dString, pString, os;
for (int i = 0; i < npar; ++i) {
gString << g[i];
qString << par[i];
dString << d[i];
if (i + 1 < npar) {
gString << ",";
qString << ",";
dString << ",";
}
}
for (int i = 0; i < ny; ++i) {
pString << lmstat->pos.at(i).x << "," << lmstat->pos.at(i).y;
if (i + 1 < ny) {
pString << ",";
}
}
os << it << "," << err << "," << derr << "," << qString.str() << "," << gString.str() << "," << dString.str() << "," << pString.str() << "\n";
data.append(os.str());
}
if (ill) {
mult = (1 + lambda * up) / (1 + lambda);
lambda *= up;
it++;
}
}
for (int i = 0; i < npar; i++) {
par[i] = newpar[i];
}
err = newerr;
lambda *= down;
if ((!ill) && (-derr < target_derr)) {
break;
}
}
lmstat->final_it = it;
lmstat->final_err = err;
lmstat->final_derr = derr;
lmstat->data = data;
return (it != lmstat->max_it);
}
// calculate the error function (chi-squared)
double error_func(double *par, int ny, double *dysq,
double (*func)(double *, int, void *, LMstat*), void *fdata, LMstat *lmstat) {
int x;
double res, e = 0;
for (x = 0; x < ny; x++) {
res = func(par, x, fdata, lmstat);
if (dysq) { // weighted least-squares
e += res * res / dysq[x];
}
else {
e += res * res;
}
}
return e;
}
// solve Ax=b for a symmetric positive-definite matrix A using the Cholesky decomposition A=LL^T, L is passed in "l", elements above the diagonal are ignored.
void solve_axb_cholesky(int n, double** l, double* x, double* b) { // n = npar, l = ch, x = delta (solution), b = d (func(par, x, fdata) * g[i]);
int i, j;
double sum;
// solve L*y = b for y (where x[] is used to store y)
for (i = 0; i < n; i++) {
sum = 0;
for (j = 0; j < i; j++) {
sum += l[i][j] * x[j];
}
x[i] = (b[i] - sum) / l[i][i];
}
// solve L^T*x = y for x (where x[] is used to store both y and x)
for (i = n-1; i >= 0; i--) {
sum = 0;
for (j = i + 1; j < n; j++) {
sum += l[j][i] * x[j];
}
x[i] = (x[i] - sum) / l[i][i];
}
}
// symmetric, positive-definite matrix "a" and returns its (lower-triangular) Cholesky factor in "l", if l=a the decomposition is performed in place, elements above the diagonal are ignored.
int cholesky_decomp(int n, double** l, double** a) {
int i, j, k;
double sum;
for (i = 0; i < n; i++) {
for (j = 0; j < i; j++) {
sum = 0;
for (k = 0; k < j; k++) {
sum += l[i][k] * l[j][k];
}
l[i][j] = (a[i][j] - sum) / l[j][j];
}
sum = 0;
for (k = 0; k < i; k++) {
sum += l[i][k] * l[i][k];
}
sum = a[i][i] - sum;
if (sum < TOL) {
return 1; // not positive-definite
}
l[i][i] = sqrt(sum);
}
return 0;
}