mirror of
https://github.com/OpenSpace/OpenSpace.git
synced 2026-01-01 17:20:09 -06:00
289 lines
10 KiB
C++
289 lines
10 KiB
C++
/*****************************************************************************************
|
|
* *
|
|
* OpenSpace *
|
|
* *
|
|
* Copyright (c) 2014-2024 *
|
|
* *
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
|
|
* software and associated documentation files (the "Software"), to deal in the Software *
|
|
* without restriction, including without limitation the rights to use, copy, modify, *
|
|
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
|
|
* permit persons to whom the Software is furnished to do so, subject to the following *
|
|
* conditions: *
|
|
* *
|
|
* The above copyright notice and this permission notice shall be included in all copies *
|
|
* or substantial portions of the Software. *
|
|
* *
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
|
|
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
|
|
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
|
|
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
|
|
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
|
|
****************************************************************************************/
|
|
|
|
#include <modules/iswa/util/dataprocessor.h>
|
|
|
|
#include <openspace/util/histogram.h>
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
|
|
namespace openspace {
|
|
|
|
void DataProcessor::useLog(bool useLog) {
|
|
_useLog = useLog;
|
|
}
|
|
|
|
void DataProcessor::useHistogram(bool useHistogram) {
|
|
_useHistogram = useHistogram;
|
|
}
|
|
|
|
void DataProcessor::normValues(glm::vec2 normValues) {
|
|
_normValues = normValues;
|
|
}
|
|
|
|
glm::size3_t DataProcessor::dimensions() const {
|
|
return _dimensions;
|
|
}
|
|
|
|
glm::vec2 DataProcessor::filterValues() const {
|
|
return _filterValues;
|
|
}
|
|
|
|
void DataProcessor::clear() {
|
|
_min.clear();
|
|
_max.clear();
|
|
_sum.clear();
|
|
_standardDeviation.clear();
|
|
_histograms.clear();
|
|
_numValues.clear();
|
|
}
|
|
|
|
float DataProcessor::processDataPoint(float value, int option) {
|
|
if (_numValues.empty()) {
|
|
return 0.f;
|
|
}
|
|
const Histogram& histogram = *_histograms[option];
|
|
const float mean = (1.f / _numValues[option]) * _sum[option];
|
|
const float sd = _standardDeviation[option];
|
|
|
|
if (_useHistogram) {
|
|
return histogram.equalize(
|
|
normalizeWithStandardScore(value, mean, sd, _histNormValues)
|
|
) / 512.f;
|
|
}
|
|
else {
|
|
return normalizeWithStandardScore(value, mean, sd, _normValues);
|
|
}
|
|
}
|
|
|
|
float DataProcessor::normalizeWithStandardScore(float value, float mean, float sd,
|
|
const glm::vec2& normalizationValues)
|
|
{
|
|
float zScoreMin = normalizationValues.x;
|
|
float zScoreMax = normalizationValues.y;
|
|
float standardScore = (value - mean) / sd;
|
|
// Clamp intresting values
|
|
standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
|
|
//return and normalize
|
|
return (standardScore + zScoreMin) / (zScoreMin + zScoreMax);
|
|
}
|
|
|
|
float DataProcessor::unnormalizeWithStandardScore(float standardScore, float mean,
|
|
float sd,
|
|
const glm::vec2& normalizationValues)
|
|
{
|
|
float zScoreMin = normalizationValues.x;
|
|
float zScoreMax = normalizationValues.y;
|
|
|
|
float value = standardScore * (zScoreMax + zScoreMin) - zScoreMin;
|
|
value = value * sd + mean;
|
|
return value;
|
|
}
|
|
|
|
void DataProcessor::initializeVectors(int numOptions) {
|
|
if (_min.empty()) {
|
|
_min = std::vector<float>(numOptions, std::numeric_limits<float>::max());
|
|
}
|
|
if (_max.empty()) {
|
|
_max = std::vector<float>(numOptions, std::numeric_limits<float>::min());
|
|
}
|
|
if (_sum.empty()) {
|
|
_sum = std::vector<float>(numOptions, 0.f);
|
|
}
|
|
if (_standardDeviation.empty()) {
|
|
_standardDeviation = std::vector<float>(numOptions, 0.f);
|
|
}
|
|
if (_numValues.empty()) {
|
|
_numValues = std::vector<float>(numOptions, 0.f);
|
|
}
|
|
if (_histograms.empty()) {
|
|
_histograms.clear();
|
|
_histograms.reserve(numOptions);
|
|
}
|
|
}
|
|
|
|
void DataProcessor::calculateFilterValues(const std::vector<int>& selectedOptions) {
|
|
_filterValues = glm::vec2(0.f);
|
|
if (selectedOptions.empty()) {
|
|
return;
|
|
}
|
|
|
|
if (!_histograms.empty()) {
|
|
for (int option : selectedOptions) {
|
|
float filterMid;
|
|
float filterWidth;
|
|
if (!_useHistogram) {
|
|
float mean = (1.f / _numValues[option]) * _sum[option];
|
|
float standardDeviation = _standardDeviation[option];
|
|
Histogram& histogram = *_histograms[option];
|
|
|
|
filterMid = histogram.highestBinValue(_useHistogram);
|
|
filterWidth = mean + histogram.binWidth();
|
|
|
|
filterMid = normalizeWithStandardScore(
|
|
filterMid,
|
|
mean,
|
|
standardDeviation,
|
|
_normValues
|
|
);
|
|
filterWidth = fabs(0.5f - normalizeWithStandardScore(
|
|
filterWidth,
|
|
mean,
|
|
standardDeviation,
|
|
_normValues)
|
|
);
|
|
}
|
|
else {
|
|
Histogram hist = _histograms[option]->equalize();
|
|
filterMid = hist.highestBinValue(true);
|
|
filterWidth = 1.f / 512.f;
|
|
}
|
|
|
|
_filterValues += glm::vec2(filterMid, filterWidth);
|
|
}
|
|
const int numSelected = static_cast<int>(selectedOptions.size());
|
|
_filterValues /= numSelected;
|
|
}
|
|
}
|
|
|
|
void DataProcessor::add(const std::vector<std::vector<float>>& optionValues,
|
|
const std::vector<float>& sum)
|
|
{
|
|
const int numOptions = static_cast<int>(optionValues.size());
|
|
|
|
for (int i = 0; i < numOptions; i++) {
|
|
const std::vector<float>& values = optionValues[i];
|
|
const int numValues = static_cast<int>(values.size());
|
|
|
|
const float mean = sum[i] / numValues;
|
|
const float variance = std::accumulate(
|
|
values.begin(),
|
|
values.end(),
|
|
0.f,
|
|
[mean](float l, float r) {
|
|
return l + static_cast<float>(std::pow(r - mean, 2));
|
|
}
|
|
);
|
|
const float standardDeviation = sqrt(variance / numValues);
|
|
|
|
const float oldStandardDeviation = _standardDeviation[i];
|
|
const float oldMean = (1.f / _numValues[i]) * _sum[i];
|
|
|
|
_sum[i] += sum[i];
|
|
_standardDeviation[i] = static_cast<float>(
|
|
std::sqrt(std::pow(standardDeviation, 2) + std::pow(_standardDeviation[i], 2))
|
|
);
|
|
_numValues[i] += numValues;
|
|
|
|
const float min = normalizeWithStandardScore(
|
|
_min[i],
|
|
_sum[i] / _numValues[i],
|
|
_standardDeviation[i],
|
|
_histNormValues
|
|
);
|
|
const float max = normalizeWithStandardScore(
|
|
_max[i],
|
|
_sum[i] / _numValues[i],
|
|
_standardDeviation[i],
|
|
_histNormValues
|
|
);
|
|
|
|
if (!_histograms[i]) {
|
|
_histograms[i] = std::make_unique<Histogram>(min, max, 512);
|
|
}
|
|
else {
|
|
const float* histData = _histograms[i]->data();
|
|
const float histMin = _histograms[i]->minValue();
|
|
const float histMax = _histograms[i]->maxValue();
|
|
const int numBins = _histograms[i]->numBins();
|
|
|
|
const float unNormHistMin = unnormalizeWithStandardScore(
|
|
histMin,
|
|
oldMean,
|
|
oldStandardDeviation,
|
|
_histNormValues
|
|
);
|
|
const float unNormHistMax = unnormalizeWithStandardScore(
|
|
histMax,
|
|
oldMean,
|
|
oldStandardDeviation,
|
|
_histNormValues
|
|
);
|
|
//unnormalize histMin, histMax
|
|
auto newHist = std::make_unique<Histogram>(
|
|
std::min(min, normalizeWithStandardScore(
|
|
unNormHistMin,
|
|
mean,
|
|
_standardDeviation[i],
|
|
_histNormValues
|
|
)),
|
|
std::min(max, normalizeWithStandardScore(
|
|
unNormHistMax,
|
|
mean,
|
|
_standardDeviation[i],
|
|
_histNormValues
|
|
)),
|
|
numBins
|
|
);
|
|
|
|
for (int j = 0; j < numBins; j++) {
|
|
float value = unnormalizeWithStandardScore(
|
|
j * (histMax - histMin) + histMin,
|
|
oldMean,
|
|
oldStandardDeviation,
|
|
_histNormValues
|
|
);
|
|
_histograms[i]->add(
|
|
normalizeWithStandardScore(
|
|
value,
|
|
mean,
|
|
_standardDeviation[i],
|
|
_histNormValues
|
|
),
|
|
histData[j]
|
|
);
|
|
}
|
|
// _histograms[i]->changeRange(min, max);
|
|
_histograms[i] = std::move(newHist);
|
|
}
|
|
|
|
for (int j = 0; j < numValues; j++) {
|
|
_histograms[i]->add(
|
|
normalizeWithStandardScore(
|
|
values[j],
|
|
mean,
|
|
_standardDeviation[i],
|
|
_histNormValues
|
|
),
|
|
1
|
|
);
|
|
}
|
|
|
|
_histograms[i]->generateEqualizer();
|
|
}
|
|
}
|
|
|
|
} // namespace
|