Files
OpenSpace/modules/iswa/util/dataprocessorjson.cpp
2024-03-08 00:36:54 +01:00

147 lines
6.3 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2024 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/iswa/util/dataprocessorjson.h>
#include <openspace/json.h>
#include <openspace/properties/selectionproperty.h>
#include <openspace/util/histogram.h>
using json = nlohmann::json;
namespace openspace {
DataProcessorJson::DataProcessorJson() : DataProcessor() {}
DataProcessorJson::~DataProcessorJson() {}
std::vector<std::string> DataProcessorJson::readMetadata(const std::string& data,
glm::size3_t& dimensions)
{
std::vector<std::string> options = std::vector<std::string>();
if (!data.empty()) {
const json& j = json::parse(data);
json variables = j["variables"];
for (json::iterator it = variables.begin(); it != variables.end(); it++) {
std::string option = it.key();
if (option == "ep") {
const json& row = it.value();
const json& col = row.at(0);
dimensions = glm::size3_t(col.size(), row.size(), 1);
}
if (_coordinateVariables.find(option) == _coordinateVariables.end()) {
options.push_back(std::move(option));
}
}
}
return options;
}
void DataProcessorJson::addDataValues(const std::string& data,
properties::SelectionProperty& dataOptions)
{
int numOptions = static_cast<int>(dataOptions.options().size());
initializeVectors(numOptions);
if (!data.empty()) {
const json& j = json::parse(data);
json variables = j["variables"];
std::vector<float> sum(numOptions, 0.f);
std::vector<std::vector<float>> optionValues(numOptions, std::vector<float>());
const std::vector<std::string>& options = dataOptions.options();
for (int i = 0; i < numOptions; i++) {
const json& row = variables[options[i]];
// int rowsize = row.size();
for (size_t y = 0; y < row.size(); ++y) {
const json& col = row.at(y);
const int colsize = static_cast<int>(col.size());
for (int x = 0; x < colsize; ++x) {
const float value = col.at(x);
optionValues[i].push_back(value);
_min[i] = std::min(_min[i], value);
_max[i] = std::max(_max[i], value);
sum[i] += value;
}
}
}
add(optionValues, sum);
}
}
std::vector<float*> DataProcessorJson::processData(const std::string& data,
properties::SelectionProperty& optionProp,
glm::size3_t& dimensions)
{
if (data.empty()) {
return std::vector<float*>();
}
const json& j = json::parse(data);
json variables = j["variables"];
const std::set<std::string>& selectedOptions = optionProp;
const std::vector<std::string>& options = optionProp.options();
std::vector<int> selectedOptionsIndices;
for (const std::string& option : selectedOptions) {
auto it = std::find(options.begin(), options.end(), option);
ghoul_assert(it != options.end(), "Selected option must be in all options");
int idx = static_cast<int>(std::distance(options.begin(), it));
selectedOptionsIndices.push_back(idx);
}
std::vector<float*> dataOptions(options.size(), nullptr);
for (int option : selectedOptionsIndices) {
// @CLEANUP: This memory is very easy to lose and should be replaced by some
// other mechanism (std::vector<float> most likely)
dataOptions[option] = new float[dimensions.x * dimensions.y] { 0.f };
json row = variables[options[option]];
const int rowsize = static_cast<int>(row.size());
for (int y = 0; y < rowsize; ++y) {
json col = row.at(y);
const int colsize = static_cast<int>(col.size());
for (int x = 0; x < colsize; ++x) {
const float value = col.at(x);
const int i = x + y * colsize;
dataOptions[option][i] = processDataPoint(value, option);
}
}
}
calculateFilterValues(selectedOptionsIndices);
return dataOptions;
}
} //namespace openspace