Files
OpenSpace/modules/globebrowsing/shaders/renderer_fs.glsl

338 lines
11 KiB
GLSL

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2025 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include "fragment.glsl"
#include <${MODULE_GLOBEBROWSING}/shaders/tile.glsl>
#include <${MODULE_GLOBEBROWSING}/shaders/texturetilemapping.glsl>
#include <${MODULE_GLOBEBROWSING}/shaders/tileheight.glsl>
#include "PowerScaling/powerScaling_fs.hglsl"
// Below are all the tiles that are used for contributing the actual fragment color
#if USE_COLORTEXTURE
uniform Layer ColorLayers[NUMLAYERS_COLORTEXTURE];
#endif // USE_COLORTEXTURE
#if USE_NIGHTTEXTURE
uniform Layer NightLayers[NUMLAYERS_NIGHTTEXTURE];
#endif // USE_NIGHTTEXTURE
#if USE_OVERLAY
uniform Layer Overlays[NUMLAYERS_OVERLAY];
#endif // USE_OVERLAY
#if USE_WATERMASK
uniform Layer WaterMasks[NUMLAYERS_WATERMASK];
#endif // USE_WATERMASK
#if SHOW_HEIGHT_RESOLUTION
uniform vec2 vertexResolution;
#endif // SHOW_HEIGHT_RESOLUTION
uniform vec3 lightDirectionCameraSpace;
uniform vec3 lightDirectionObjSpace;
uniform mat4 modelViewTransform;
uniform float ringSize;
#if PERFORM_SHADING
uniform float orenNayarRoughness;
uniform float ambientIntensity;
#endif // PERFORM_SHADING
#if SHADOW_MAPPING_ENABLED
#if USE_RING_SHADOWS
// Fragment position in object space
in vec3 posObjSpace;
// Color of the rings
uniform sampler1D ringTextureColor;
// Transparency of the rings
uniform sampler1D ringTextureTransparency;
uniform vec2 textureOffset;
#endif // USE_RING_SHADOWS
#endif // SHADOW_MAPPING_ENABLED
#if USE_ECLIPSE_SHADOWS
#define NSEclipseShadowsMinusOne #{nEclipseShadows}
#define NSEclipseShadows (NSEclipseShadowsMinusOne + 1)
/*******************************************************************************
***** ALL CALCULATIONS FOR ECLIPSE ARE IN METERS AND IN WORLD SPACE SYSTEM ****
*******************************************************************************/
struct ShadowRenderingStruct {
double xu, xp;
double rs, rc;
dvec3 sourceCasterVec;
dvec3 casterPositionVec;
bool isShadowing;
};
// Eclipse shadow data
// JCC: Remove and use dictionary to
// decides the number of shadows
uniform ShadowRenderingStruct shadowDataArray[NSEclipseShadows];
uniform int shadows;
uniform bool hardShadows;
vec4 calcShadow(const ShadowRenderingStruct shadowInfoArray[NSEclipseShadows],
const dvec3 position, const bool ground)
{
#for i in 0..#{nEclipseShadows}
if (shadowInfoArray[#{i}].isShadowing) {
dvec3 pc = shadowInfoArray[#{i}].casterPositionVec - position;
dvec3 sc_norm = shadowInfoArray[#{i}].sourceCasterVec;
dvec3 pc_proj = dot(pc, sc_norm) * sc_norm;
dvec3 d = pc - pc_proj;
float length_d = float(length(d));
double length_pc_proj = length(pc_proj);
float r_p_pi = float(shadowInfoArray[#{i}].rc * (length_pc_proj + shadowInfoArray[#{i}].xp) / shadowInfoArray[#{i}].xp);
float r_u_pi = float(shadowInfoArray[#{i}].rc * (shadowInfoArray[#{i}].xu - length_pc_proj) / shadowInfoArray[#{i}].xu);
if (length_d < r_u_pi) { // umbra
if (ground) {
#if USE_ECLIPSE_HARD_SHADOWS
return vec4(0.2, 0.2, 0.2, 1.0);
#else
// butterworthFunc
return vec4(vec3(sqrt(r_u_pi / (r_u_pi + pow(length_d, 2.0)))), 1.0);
#endif
}
else {
#if USE_ECLIPSE_HARD_SHADOWS
return vec4(0.5, 0.5, 0.5, 1.0);
#else
return vec4(vec3(length_d / r_p_pi), 1.0);
#endif
}
}
else if (length_d < r_p_pi) {// penumbra
#if USE_ECLIPSE_HARD_SHADOWS
return vec4(0.5, 0.5, 0.5, 1.0);
#else
return vec4(vec3(length_d / r_p_pi), 1.0);
#endif
}
}
#endfor
return vec4(1.0);
}
#endif
float rayPlaneIntersection(vec3 rayOrigin, vec3 rayDirection, vec3 planePoint,
vec3 planeNormal)
{
float denom = dot(planeNormal, rayDirection);
// Check if ray is parallel to plane (or nearly parallel)
if (abs(denom) < 1e-6) {
return -1.0; // No intersection or ray lies in plane
}
vec3 p0l0 = planePoint - rayOrigin;
float t = dot(p0l0, planeNormal) / denom;
// Return negative if intersection is behind ray origin
return t >= 0.0 ? t : -1.0;
}
in vec4 fs_position;
in vec2 fs_uv;
in vec3 ellipsoidNormalCameraSpace;
in vec3 levelWeights;
in vec3 positionCameraSpace;
in vec3 normalObjSpace;
#if USE_ACCURATE_NORMALS
in vec3 ellipsoidTangentThetaCameraSpace;
in vec3 ellipsoidTangentPhiCameraSpace;
#endif // USE_ACCURATE_NORMALS
#if USE_ECLIPSE_SHADOWS
in vec3 positionWorldSpace;
#endif // USE_ECLIPSE_SHADOWS
uniform float opacity;
Fragment getFragment() {
Fragment frag;
frag.color = vec4(0.3, 0.3, 0.3, 1.0);
vec3 normal = normalize(ellipsoidNormalCameraSpace);
#if USE_ACCURATE_NORMALS
normal = getTileNormal(
fs_uv,
levelWeights,
normalize(ellipsoidNormalCameraSpace),
normalize(ellipsoidTangentThetaCameraSpace),
normalize(ellipsoidTangentPhiCameraSpace)
);
#endif /// USE_ACCURATE_NORMALS
#if USE_COLORTEXTURE
frag.color = calculateColor(frag.color, fs_uv, levelWeights, ColorLayers);
#endif // USE_COLORTEXTURE
#if USE_WATERMASK
float waterReflectance = 0.0;
frag.color = calculateWater(
frag.color,
fs_uv,
levelWeights,
WaterMasks,
normal,
lightDirectionCameraSpace, // Should already be normalized
positionCameraSpace,
waterReflectance
);
#endif // USE_WATERMASK
#if USE_NIGHTTEXTURE
frag.color = calculateNight(
frag.color,
fs_uv,
levelWeights,
NightLayers,
normalize(ellipsoidNormalCameraSpace),
lightDirectionCameraSpace // Should already be normalized
);
#endif // USE_NIGHTTEXTURE
#if PERFORM_SHADING
vec3 preShadedColor = frag.color.rgb;
frag.color = calculateShadedColor(
frag.color,
normal,
lightDirectionCameraSpace,
normalize(positionCameraSpace),
orenNayarRoughness,
ambientIntensity
);
#endif // PERFORM_SHADING
#if USE_ECLIPSE_SHADOWS
frag.color *= calcShadow(shadowDataArray, dvec3(positionWorldSpace), true);
#endif // USE_ECLIPSE_SHADOWS
#if USE_OVERLAY
frag.color = calculateOverlay(frag.color, fs_uv, levelWeights, Overlays);
#endif // USE_OVERLAY
#if SHOW_HEIGHT_INTENSITIES
frag.color.rgb *= vec3(0.1);
float untransformedHeight = getUntransformedTileVertexHeight(fs_uv, levelWeights);
float contourLine = fract(10.0 * untransformedHeight) > 0.98 ? 1.0 : 0.0;
frag.color.r += untransformedHeight;
frag.color.b = contourLine;
#endif // SHOW_HEIGHT_INTENSITIES
#if SHOW_HEIGHT_RESOLUTION
frag.color += 0.0001 * calculateDebugColor(fs_uv, fs_position, vertexResolution);
#if USE_HEIGHTMAP
frag.color.r = min(frag.color.r, 0.8);
frag.color.r += tileResolution(fs_uv, HeightLayers[0].pile.chunkTile0) > 0.9 ? 1 : 0;
#endif // USE_HEIGHTMAP
#endif // SHOW_HEIGHT_RESOLUTION
// Other data
#if USE_WATERMASK
// Water reflectance is added to the G-Buffer.
frag.gNormal.w = waterReflectance;
#else
frag.gNormal.w = 0.0;
#endif
// Normal is written View Space (Including SGCT View Matrix).
frag.gNormal.xyz = normal;
if (dot(positionCameraSpace, vec3(1.0)) != 0.0) {
frag.gPosition = vec4(positionCameraSpace, 1.0); // in Camera Rig Space
}
else {
frag.gPosition = vec4(1.0); // in Camera Rig Space
}
frag.depth = fs_position.w;
#if SHOW_CHUNK_EDGES
const float BorderSize = 0.005;
const vec3 BorderColor = vec3(1.0, 0.0, 0.0);
vec2 uvOffset = fs_uv - vec2(0.5);
float thres = 0.5 - BorderSize * 0.5;
bool isBorder = abs(uvOffset.x) > thres || abs(uvOffset.y) > thres;
if (isBorder) {
frag.color.rgb += BorderColor;
}
#endif // SHOW_CHUNK_EDGES
#if (SHADOW_MAPPING_ENABLED && PERFORM_SHADING && USE_RING_SHADOWS)
// 0.0 is full shadow, 1.0 is no shadow
float shadow = 1.0;
// Light through rings is colored, default full white
vec3 lightColor = vec3(1.0);
// Calculate ring shadow by projecting ring texture directly onto surface
// Assume ring lies in the XZ plane (Y=0) in object space
vec3 surfaceToSun = -normalize(lightDirectionObjSpace); // Use world coordinates
vec3 p = posObjSpace;
vec3 ringPlaneNormal = vec3(0.0, 0.0, 1.0);
if (abs(surfaceToSun.y) > 1e-8 && dot(normalObjSpace, lightDirectionObjSpace) < 0.0) {
float t = rayPlaneIntersection(p, surfaceToSun, vec3(0.0), ringPlaneNormal);
vec3 ringIntersection = p + t * surfaceToSun;
// Calculate distance from ring center
float tx = length(ringIntersection.xy) / ringSize;
// See advanced_rings_fs.glsl for explanation of textureOffset
float texCoord = (tx - textureOffset.x) / (textureOffset.y - textureOffset.x);
if (texCoord >= 0.0 && texCoord <= 1.0) {
// Sample ring transparency texture
float ringOpacity = texture(ringTextureTransparency, texCoord).r;
// Increase the shadow darkness factor with low angle to simulate the light having
// to pass through more material
float angleFactor = clamp(abs(-dot(ringPlaneNormal, surfaceToSun)) / 2.0, 0.0, 0.3);
// Calculate shadow factor based on ring opacity
shadow = clamp(ringOpacity + angleFactor, 0.05, 1.0);
lightColor = texture(ringTextureColor, texCoord).rgb;
}
}
// Blend the light color passing through the rings with the pre-shaded color
frag.color.rgb = mix(preShadedColor * lightColor * ambientIntensity, frag.color.rgb, shadow);
#endif // (SHADOW_MAPPING_ENABLED && PERFORM_SHADING && USE_RING_SHADOWS)
frag.color.a *= opacity;
frag.color = clamp(frag.color, 0.0, 1.0);
return frag;
}