Files
OpenSpace/modules/multiresvolume/rendering/tfbrickselector.cpp
2017-07-24 12:41:32 -06:00

321 lines
14 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2017 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/multiresvolume/rendering/tfbrickselector.h>
#include <modules/multiresvolume/rendering/errorhistogrammanager.h>
#include <openspace/rendering/transferfunction.h>
#include <openspace/util/histogram.h>
#include <algorithm>
#include <cassert>
namespace {
const char* _loggerCat = "TfBrickSelector";
} // namespace
namespace openspace {
TfBrickSelector::TfBrickSelector(std::shared_ptr<TSP> tsp, ErrorHistogramManager* hm,
TransferFunction* tf, int memoryBudget,
int streamingBudget)
: TSPBrickSelector(tsp, tf, memoryBudget, streamingBudget)
, _histogramManager(hm) {}
TfBrickSelector::~TfBrickSelector() {}
bool TfBrickSelector::initialize() {
return calculateBrickErrors();
}
void TfBrickSelector::selectBricks(int timestep, std::vector<int>& bricks) {
int numTimeSteps = _tsp->header().numTimesteps_;
int numBricksPerDim = _tsp->header().xNumBricks_;
unsigned int rootNode = 0;
BrickSelection::SplitType splitType;
float rootSplitPoints = splitPoints(rootNode, splitType);
BrickSelection brickSelection = BrickSelection(numBricksPerDim, numTimeSteps, splitType, rootSplitPoints);
std::vector<BrickSelection> priorityQueue;
std::vector<BrickSelection> leafSelections;
std::vector<BrickSelection> temporalSplitQueue;
std::vector<BrickSelection> deadEnds;
if (splitType != BrickSelection::SplitType::None) {
priorityQueue.push_back(brickSelection);
} else {
leafSelections.push_back(brickSelection);
}
int memoryBudget = _memoryBudget;
int totalStreamingBudget = _streamingBudget * numTimeSteps;
int nBricksInMemory = 1;
int nStreamedBricks = 1;
// First loop: While neither the memory nor the streaming budget is reached,
// try to optimize for visual quality vs memory.
while (nBricksInMemory <= memoryBudget - 7 && priorityQueue.size() > 0) {
std::pop_heap(priorityQueue.begin(), priorityQueue.end(), BrickSelection::compareSplitPoints);
BrickSelection bs = priorityQueue.back();
unsigned int brickIndex = bs.brickIndex;
priorityQueue.pop_back();
// TODO: handle edge case when we can only afford temporal splits or no split (only 1 spot left)
if (bs.splitType == BrickSelection::SplitType::Temporal) {
unsigned int childBrickIndex;
bool pickRightTimeChild = bs.timestepInRightChild(timestep);
// On average on the whole time period, splitting this spatial brick in two time steps
// would generate twice as much streaming. Current number of streams of this spatial brick
// is 2^nTemporalSplits over the whole time period.
int newStreams = static_cast<int>(std::pow(2, bs.nTemporalSplits));
// Refining this one more step would require the double amount of streams
if (nStreamedBricks + newStreams > totalStreamingBudget) {
// Reached dead end (streaming budget would be exceeded)
deadEnds.push_back(bs);
break;
}
nStreamedBricks += newStreams;
if (pickRightTimeChild) {
childBrickIndex = _tsp->getBstRight(brickIndex);
} else {
childBrickIndex = _tsp->getBstLeft(brickIndex);
}
BrickSelection::SplitType childSplitType;
float childSplitPoints = splitPoints(childBrickIndex, childSplitType);
BrickSelection childSelection = bs.splitTemporally(pickRightTimeChild, childBrickIndex, childSplitType, childSplitPoints);
if (childSplitType != BrickSelection::SplitType::None) {
priorityQueue.push_back(childSelection);
std::push_heap(priorityQueue.begin(), priorityQueue.end(), BrickSelection::compareSplitPoints);
} else {
leafSelections.push_back(childSelection);
}
} else if (bs.splitType == BrickSelection::SplitType::Spatial) {
nBricksInMemory += 7; // Remove one and add eight.
unsigned int firstChild = _tsp->getFirstOctreeChild(brickIndex);
// On average on the whole time period, splitting this spatial brick into eight spatial bricks
// would generate eight times as much streaming. Current number of streams of this spatial brick
// is 2^nTemporalStreams over the whole time period.
int newStreams = 7 * static_cast<int>(std::pow(2, bs.nTemporalSplits));
if (nStreamedBricks + newStreams > totalStreamingBudget) {
// Reached dead end (streaming budget would be exceeded)
// However, temporal split might be possible
if (bs.splitType != BrickSelection::SplitType::Temporal) {
bs.splitType = BrickSelection::SplitType::Temporal;
bs.splitPoints = temporalSplitPoints(bs.brickIndex);
}
if (bs.splitPoints > -1) {
temporalSplitQueue.push_back(bs);
} else {
deadEnds.push_back(bs);
}
break;
}
nStreamedBricks += newStreams;
for (unsigned int i = 0; i < 8; i++) {
unsigned int childBrickIndex = firstChild + i;
BrickSelection::SplitType childSplitType;
float childSplitPoints = splitPoints(childBrickIndex, childSplitType);
BrickSelection childSelection = bs.splitSpatially(i % 2, (i/2) % 2, i/4, childBrickIndex, childSplitType, childSplitPoints);
if (childSplitType != BrickSelection::SplitType::None) {
priorityQueue.push_back(childSelection);
std::push_heap(priorityQueue.begin(), priorityQueue.end(), BrickSelection::compareSplitPoints);
} else {
leafSelections.push_back(childSelection);
}
}
}
}
// Is it possible that we may stream more bricks?
if (nStreamedBricks < totalStreamingBudget - 1) {
while (priorityQueue.size() > 0) {
BrickSelection bs = priorityQueue.back();
if (bs.splitType != BrickSelection::SplitType::Temporal) {
bs.splitType = BrickSelection::SplitType::Temporal;
bs.splitPoints = temporalSplitPoints(bs.brickIndex);
}
priorityQueue.pop_back();
if (bs.splitPoints > -1) {
temporalSplitQueue.push_back(bs);
std::push_heap(temporalSplitQueue.begin(), temporalSplitQueue.end(), BrickSelection::compareSplitPoints);
} else {
deadEnds.push_back(bs);
}
}
// Keep splitting until it's not possible anymore
while (nStreamedBricks < totalStreamingBudget - 1 && temporalSplitQueue.size() > 0) {
std::pop_heap(temporalSplitQueue.begin(), temporalSplitQueue.end(), BrickSelection::compareSplitPoints);
BrickSelection bs = temporalSplitQueue.back();
temporalSplitQueue.pop_back();
unsigned int brickIndex = bs.brickIndex;
int newStreams = static_cast<int>(std::pow(2, bs.nTemporalSplits));
if (nStreamedBricks + newStreams > totalStreamingBudget) {
// The current best choice would make us exceed the streaming budget, try next instead.
deadEnds.push_back(bs);
continue;
}
nStreamedBricks += newStreams;
unsigned int childBrickIndex;
bool pickRightTimeChild = bs.timestepInRightChild(timestep);
if (pickRightTimeChild) {
childBrickIndex = _tsp->getBstRight(brickIndex);
} else {
childBrickIndex = _tsp->getBstLeft(brickIndex);
}
float childSplitPoints = temporalSplitPoints(childBrickIndex);
if (childSplitPoints > -1) {
BrickSelection childSelection = bs.splitTemporally(pickRightTimeChild, childBrickIndex, BrickSelection::SplitType::Temporal, childSplitPoints);
temporalSplitQueue.push_back(childSelection);
std::push_heap(temporalSplitQueue.begin(), temporalSplitQueue.end(), BrickSelection::compareSplitPoints);
} else {
BrickSelection childSelection = bs.splitTemporally(pickRightTimeChild, childBrickIndex, BrickSelection::SplitType::None, -1);
deadEnds.push_back(childSelection);
}
}
} else {
// Write selected inner nodes to brickSelection vector
for (const BrickSelection& bs : priorityQueue) {
writeSelection(bs, bricks);
}
}
// Write selected inner nodes to brickSelection vector
for (const BrickSelection& bs : temporalSplitQueue) {
writeSelection(bs, bricks);
}
for (const BrickSelection& bs : deadEnds) {
writeSelection(bs, bricks);
}
// Write selected leaf nodes to brickSelection vector
for (const BrickSelection& bs : leafSelections) {
writeSelection(bs, bricks);
}
}
float TfBrickSelector::temporalSplitPoints(unsigned int brickIndex) {
if (_tsp->isBstLeaf(brickIndex)) {
return -1;
}
unsigned int leftChild = _tsp->getBstLeft(brickIndex);
unsigned int rightChild = _tsp->getBstRight(brickIndex);
float currentError = _brickErrors[brickIndex];
float splitError = _brickErrors[leftChild] + _brickErrors[rightChild];
float diff = fabs(currentError - splitError);
return diff * 0.5;
}
float TfBrickSelector::spatialSplitPoints(unsigned int brickIndex) {
if (_tsp->isOctreeLeaf(brickIndex)) {
return -1;
}
float currentError = _brickErrors[brickIndex];
float splitError = 0;
unsigned int firstChild = _tsp->getFirstOctreeChild(brickIndex);
for (unsigned int i = 0; i < 8; i++) {
unsigned int child = firstChild + i;
splitError += _brickErrors[child];
}
float diff = fabs(currentError - splitError);
return diff * 0.125;
}
float TfBrickSelector::splitPoints(unsigned int brickIndex, BrickSelection::SplitType& splitType) {
float temporalPoints = temporalSplitPoints(brickIndex);
float spatialPoints = spatialSplitPoints(brickIndex);
float splitPoints;
if (spatialPoints > 0 && spatialPoints > temporalPoints) {
splitPoints = spatialPoints;
splitType = BrickSelection::SplitType::Spatial;
} else if (temporalPoints > 0) {
splitPoints = temporalPoints;
splitType = BrickSelection::SplitType::Temporal;
} else {
splitPoints = -1;
splitType = BrickSelection::SplitType::None;
}
return splitPoints;
}
bool TfBrickSelector::calculateBrickErrors() {
std::vector<float> gradients = getTfGradients();
if (!gradients.size()) return false;
size_t tfWidth = _transferFunction->width();
unsigned int nHistograms = _tsp->numTotalNodes();
_brickErrors = std::vector<float>(nHistograms);
for (unsigned int brickIndex = 0; brickIndex < nHistograms; brickIndex++) {
if (_tsp->isBstLeaf(brickIndex) && _tsp->isOctreeLeaf(brickIndex)) {
_brickErrors[brickIndex] = 0;
} else {
const Histogram* histogram = _histogramManager->getHistogram(brickIndex);
float error = 0;
for (int i = 0; i < gradients.size(); i++) {
float x = static_cast<float>(i + 0.5f) / static_cast<float>(tfWidth);
float sample = histogram->interpolate(x);
assert(sample >= 0);
assert(gradients[i] >= 0);
error += sample * gradients[i];
}
_brickErrors[brickIndex] = error;
}
}
return true;
}
} // namespace openspace