Files
OpenSpace/modules/iswa/util/dataprocessor.cpp
2016-05-18 15:06:35 -04:00

389 lines
14 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2015 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/iswa/util/dataprocessor.h>
#include <openspace/util/histogram.h>
#include <fstream>
#include <ghoul/io/texture/texturereader.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/textureunit.h>
#include <openspace/scene/scene.h>
#include <openspace/scene/scenegraphnode.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/util/spicemanager.h>
#include <ghoul/filesystem/filesystem.h>
#include <modules/iswa/util/iswamanager.h>
#include <modules/iswa/ext/json/json.hpp>
namespace {
const std::string _loggerCat = "DataPlane";
using json = nlohmann::json;
}
namespace openspace {
DataProcessor::DataProcessor(bool useLog, bool useHistogram, glm::vec2 normValues)
:_useLog(useLog)
,_useHistogram(useHistogram)
,_normValues(normValues)
,_filterValues(glm::vec2(0))
{
_coordinateVariables = {"x", "y", "z", "phi", "theta"};
};
DataProcessor::~DataProcessor(){};
std::vector<std::string> DataProcessor::readHeader(std::string& dataBuffer){
std::vector<std::string> options = std::vector<std::string>();
if(!dataBuffer.empty()){
std::stringstream memorystream(dataBuffer);
std::string line;
while(getline(memorystream,line)){
if(line.find("#") == 0){
if(line.find("# Output data:") == 0){
line = line.substr(26);
std::stringstream ss(line);
std::string token;
getline(ss, token, 'x');
int x = std::stoi(token);
getline(ss, token, '=');
int y = std::stoi(token);
_dimensions = glm::size3_t(x, y, 1);
getline(memorystream, line);
line = line.substr(1);
ss = std::stringstream(line);
std::string option;
while(ss >> option){
if(_coordinateVariables.find(option) == _coordinateVariables.end()){
options.push_back(option);
}
}
}
}else{
break;
}
}
}
return options;
}
std::vector<std::string> DataProcessor::readJSONHeader(std::string& dataBuffer){
std::vector<std::string> options = std::vector<std::string>();
if(!dataBuffer.empty()){
json j = json::parse(dataBuffer);
json var = j["variables"];
for (json::iterator it = var.begin(); it != var.end(); ++it) {
std::string option = it.key();
if(option == "x"){
json lon = it.value();
json lat = lon.at(0);
_dimensions = glm::size3_t(lat.size(), lon.size(), 1);
}
if(_coordinateVariables.find(option) == _coordinateVariables.end()){
options.push_back(option);
}
}
}
return options;
}
std::vector<float*> DataProcessor::readData(std::string& dataBuffer, properties::SelectionProperty dataOptions){
if(!dataBuffer.empty()){
// if(!_dataOptions.options().size()) // load options for value selection
// readHeader(dataBuffer);
std::stringstream memorystream(dataBuffer);
std::string line;
std::vector<int> selectedOptions = dataOptions.value();
int numSelected = selectedOptions.size();
std::vector<float> min(numSelected, std::numeric_limits<float>::max());
std::vector<float> max(numSelected, std::numeric_limits<float>::min());
std::vector<float> sum(numSelected, 0.0f);
std::vector<std::vector<float>> optionValues(numSelected, std::vector<float>());
std::vector<float*> data(dataOptions.options().size(), nullptr);
for(int option : selectedOptions){
data[option] = new float[_dimensions.x*_dimensions.y]{0.0f};
}
int numValues = 0;
while(getline(memorystream, line)){
if(line.find("#") == 0){ //part of the header
continue;
}
std::stringstream ss(line);
std::vector<float> value;
float v;
while(ss >> v){
value.push_back(v);
}
if(value.size()){
for(int i=0; i<numSelected; i++){
float v = value[selectedOptions[i]+3]; //+3 because "options" x, y and z.
if(_useLog){
int sign = (v>0)? 1:-1;
v = sign*log(fabs(v) + 1);
}
optionValues[i].push_back(v);
min[i] = std::min(min[i], v);
max[i] = std::max(max[i], v);
sum[i] += v;
}
numValues++;
}
}
// std::cout << "Actual size: " << numValues << " Expected: " << _dimensions.x*_dimensions.y << std::endl;
if(numValues != _dimensions.x*_dimensions.y){
LWARNING("Number of values read and expected are not the same");
return std::vector<float*>();
}
// FOR TESTING
// ===========
// std::chrono::time_point<std::chrono::system_clock> start, end;
// start = std::chrono::system_clock::now();
// ===========
for(int i=0; i<numSelected; i++){
processData(data[ selectedOptions[i] ], optionValues[i], min[i], max[i], sum[i]);
}
// FOR TESTING
// ===========
// end = std::chrono::system_clock::now();
// _numOfBenchmarks++;
// std::chrono::duration<double> elapsed_seconds = end-start;
// _avgBenchmarkTime = ( (_avgBenchmarkTime * (_numOfBenchmarks-1)) + elapsed_seconds.count() ) / _numOfBenchmarks;
// std::cout << " readData():" << std::endl;
// std::cout << "avg elapsed time: " << _avgBenchmarkTime << "s\n";
// std::cout << "num Benchmarks: " << _numOfBenchmarks << "\n";
// ===========
return data;
}
else {
// LWARNING("Nothing in memory buffer, are you connected to the information super highway?");
return std::vector<float*>();
}
}
std::vector<float*> DataProcessor::readJSONData(std::string& dataBuffer, properties::SelectionProperty dataOptions){
if(!dataBuffer.empty()){
json j = json::parse(dataBuffer);
json var = j["variables"];
// if(!_dataOptions.options().size()) // load options for value selection
// readHeader(dataBuffer);
// std::stringstream memorystream(dataBuffer);
// std::string line;
std::vector<int> selectedOptions = dataOptions.value();
int numSelected = selectedOptions.size();
std::vector<float> min(numSelected, std::numeric_limits<float>::max());
std::vector<float> max(numSelected, std::numeric_limits<float>::min());
std::vector<float> sum(numSelected, 0.0f);
std::vector<std::vector<float>> optionValues(numSelected, std::vector<float>());
auto options = dataOptions.options();
std::vector<float*> data(options.size(), nullptr);
int i = 0;
for(int option : selectedOptions){
data[option] = new float[_dimensions.x*_dimensions.y]{0.0f};
std::stringstream memorystream(options[option].description);
std::string optionName;
getline(memorystream, optionName, '/');
getline(memorystream, optionName, '/');
json valueArray = var[optionName];
int ySize = valueArray.size();
for(int y=0; y<valueArray.size(); y++){
json values = valueArray.at(y);
for(int x=0; x<values.size(); x++){
float v = values.at(x);
if(_useLog){
int sign = (v>0)? 1:-1;
if(v != 0){
v = sign*log(fabs(v));
}
}
optionValues[i].push_back(v);
min[i] = std::min(min[i], v);
max[i] = std::max(max[i], v);
sum[i] += v;
}
// break;
}
i++;
}
for(int i=0; i<numSelected; i++){
processData(data[ selectedOptions[i] ], optionValues[i], min[i], max[i], sum[i]);
}
return data;
}
else {
// LWARNING("Nothing in memory buffer, are you connected to the information super highway?");
return std::vector<float*>();
}
}
std::vector<float*> DataProcessor::processKameleonData(std::vector<float*> kdata, glm::size3_t dimensions, properties::SelectionProperty dataOptions){
std::vector<int> selectedOptions = dataOptions.value();
int numSelected = selectedOptions.size();
std::vector<float> min(numSelected, std::numeric_limits<float>::max());
std::vector<float> max(numSelected, std::numeric_limits<float>::min());
std::vector<float> sum(numSelected, 0.0f);
std::vector<std::vector<float>> optionValues(numSelected, std::vector<float>());
auto options = dataOptions.options();
std::vector<float*> data(options.size(), nullptr);
int numValues = dimensions.x*dimensions.y*dimensions.z;
int i = 0;
for(int option : selectedOptions){
data[option] = new float[numValues]{0.0f};
for(int j=0; j<numValues; j++){
float v = kdata[option][j];
if(_useLog){
int sign = (v>0)? 1:-1;
if(v != 0){
v = sign*log(fabs(v));
}
}
optionValues[i].push_back(v);
min[i] = std::min(min[i], v);
max[i] = std::max(max[i], v);
sum[i] += v;
}
i++;
}
for(int i=0; i<numSelected; i++){
processData(data[ selectedOptions[i] ], optionValues[i], min[i], max[i], sum[i]);
}
return data;
}
void DataProcessor::processData(float* outputData, std::vector<float>& inputData, float min, float max,float sum){
const int numValues = inputData.size();
Histogram histogram(min, max, 512);
//Calculate the mean
float mean = (1.0 / numValues) * sum;
//Calculate the Standard Deviation
float var = 0;
for(auto dataValue : inputData){
var += pow(dataValue - mean, 2);
}
float standardDeviation = sqrt ( var / numValues );
// Histogram functionality
if(_useHistogram){
for(auto dataValue : inputData){
histogram.add(dataValue, 1);
}
histogram.generateEqualizer();
standardDeviation = histogram.equalize(standardDeviation);
mean = histogram.equalize(mean);
}
// Normalize and equalize
for(int i=0; i < numValues; i++){
float v = inputData[i];
if(_useHistogram){
v = histogram.equalize(v);
}
v = normalizeWithStandardScore(v, mean, standardDeviation);
outputData[i] += v;
}
if(_useHistogram){
float val = histogram.highestBinValue(_useHistogram);
val = normalizeWithStandardScore(val, mean, standardDeviation);
float width = normalizeWithStandardScore(1, mean, standardDeviation);
_filterValues = glm::vec2( val, width);
}
// Histogram equalized = histogram.equalize();
// histogram.print();
// equalized.print();
}
float DataProcessor::normalizeWithStandardScore(float value, float mean, float sd){
float zScoreMin = _normValues.x;
float zScoreMax = _normValues.y;
float standardScore = ( value - mean ) / sd;
// Clamp intresting values
standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
//return and normalize
return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax );
}
glm::vec2 DataProcessor::filterValues(){
return _filterValues;
}
}