Files
OpenSpace/modules/globebrowsing/chunk/chunkrenderer.cpp

596 lines
29 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/globebrowsing/chunk/chunkrenderer.h>
#include <modules/globebrowsing/chunk/chunkedlodglobe.h>
// open space includes
#include <openspace/engine/wrapper/windowwrapper.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/rendering/renderengine.h>
// ghoul includes
#include <ghoul/misc/assert.h>
#include <ghoul/opengl/texture.h>
#include <ghoul/opengl/textureunit.h>
// STL includes
#include <sstream>
#define _USE_MATH_DEFINES
#include <math.h>
namespace {
const std::string _loggerCat = "PatchRenderer";
const std::string keyFrame = "Frame";
const std::string keyGeometry = "Geometry";
const std::string keyShading = "PerformShading";
const std::string keyBody = "Body";
}
namespace openspace {
ChunkRenderer::ChunkRenderer(
std::shared_ptr<Grid> grid,
std::shared_ptr<TileProviderManager> tileProviderManager)
: _tileProviderManager(tileProviderManager)
, _grid(grid)
{
_globalRenderingShaderProvider = std::unique_ptr<LayeredTextureShaderProvider>
(new LayeredTextureShaderProvider(
"GlobalChunkedLodPatch",
"${MODULE_GLOBEBROWSING}/shaders/globalchunkedlodpatch_vs.glsl",
"${MODULE_GLOBEBROWSING}/shaders/globalchunkedlodpatch_fs.glsl"));
_localRenderingShaderProvider = std::unique_ptr<LayeredTextureShaderProvider>
(new LayeredTextureShaderProvider(
"LocalChunkedLodPatch",
"${MODULE_GLOBEBROWSING}/shaders/localchunkedlodpatch_vs.glsl",
"${MODULE_GLOBEBROWSING}/shaders/localchunkedlodpatch_fs.glsl"));
}
void ChunkRenderer::renderChunk(const Chunk& chunk, const RenderData& data) {
if (chunk.index().level < 9) {
renderChunkGlobally(chunk, data);
}
else {
renderChunkLocally(chunk, data);
}
}
void ChunkRenderer::update() {
// unued atm. Could be used for caching or precalculating
}
void ChunkRenderer::setDepthTransformUniforms(
ProgramObject* programObject, const std::string& indexedTileKey, const TileDepthTransform& tileDepthTransform)
{
programObject->setUniform(
indexedTileKey + ".depthTransform.depthScale",
tileDepthTransform.depthScale);
programObject->setUniform(
indexedTileKey + ".depthTransform.depthOffset",
tileDepthTransform.depthOffset);
}
void ChunkRenderer::activateTileAndSetTileUniforms(
ProgramObject* programObject,
ghoul::opengl::TextureUnit& texUnit,
const std::string indexedTileKey,
const TileAndTransform& tileAndTransform)
{
// Blend tile with two parents
// The texture needs a unit to sample from
texUnit.activate();
tileAndTransform.tile.texture->bind();
programObject->setUniform(indexedTileKey + ".textureSampler", texUnit);
programObject->setUniform(
indexedTileKey + ".uvTransform.uvScale",
tileAndTransform.uvTransform.uvScale);
programObject->setUniform(
indexedTileKey + ".uvTransform.uvOffset",
tileAndTransform.uvTransform.uvOffset);
}
ProgramObject* ChunkRenderer::getActivatedProgramWithTileData(
LayeredTextureShaderProvider* layeredTextureShaderProvider,
const Chunk& chunk)
{
const ChunkIndex& chunkIndex = chunk.index();
auto heightMapProviders = _tileProviderManager->getActivatedLayerCategory("HeightMaps");
auto colorTextureProviders = _tileProviderManager->getActivatedLayerCategory("ColorTextures");
auto nightTextureProviders = _tileProviderManager->getActivatedLayerCategory("NightTextures");
auto overlayProviders = _tileProviderManager->getActivatedLayerCategory("Overlays");
auto waterMaskProviders = _tileProviderManager->getActivatedLayerCategory("WaterMasks");
// TODO: This does not need to be updated every time. Maybe flag as dirty when
// needing update instead.
// Create information for the shader provider
LayeredTextureInfo layeredTextureInfoHeight;
LayeredTextureInfo layeredTextureInfoColor;
LayeredTextureInfo layeredTextureInfoNight;
LayeredTextureInfo layeredTextureInfoOverlay;
LayeredTextureInfo layeredTextureInfoWater;
layeredTextureInfoHeight.keyLastLayerIndex = "lastLayerIndexHeight";
layeredTextureInfoHeight.lastLayerIndex = heightMapProviders.size() - 1;
layeredTextureInfoHeight.keyUseThisLayerType = "useHeightMap";
layeredTextureInfoHeight.keyLayerBlendingEnabled = "heightMapBlendingEnabled";
layeredTextureInfoHeight.layerBlendingEnabled = chunk.owner()->blendHeightMap;
layeredTextureInfoColor.keyLastLayerIndex = "lastLayerIndexColor";
layeredTextureInfoColor.lastLayerIndex = colorTextureProviders.size() - 1;
layeredTextureInfoColor.keyUseThisLayerType = "useColorTexture";
layeredTextureInfoColor.keyLayerBlendingEnabled = "colorTextureBlendingEnabled";
layeredTextureInfoColor.layerBlendingEnabled = chunk.owner()->blendColorMap;
layeredTextureInfoNight.keyLastLayerIndex = "lastLayerIndexNight";
layeredTextureInfoNight.lastLayerIndex = nightTextureProviders.size() - 1;
layeredTextureInfoNight.keyUseThisLayerType = "useNightTexture";
layeredTextureInfoNight.keyLayerBlendingEnabled = "nightTextureBlendingEnabled";
layeredTextureInfoNight.layerBlendingEnabled = chunk.owner()->blendNightTexture;
layeredTextureInfoOverlay.keyLastLayerIndex = "lastLayerIndexOverlay";
layeredTextureInfoOverlay.lastLayerIndex = overlayProviders.size() - 1;
layeredTextureInfoOverlay.keyUseThisLayerType = "useOverlay";
layeredTextureInfoOverlay.keyLayerBlendingEnabled = "overlayBlendingEnabled";
layeredTextureInfoOverlay.layerBlendingEnabled = chunk.owner()->blendOverlay;
layeredTextureInfoWater.keyLastLayerIndex = "lastLayerIndexWater";
layeredTextureInfoWater.lastLayerIndex = waterMaskProviders.size() - 1;
layeredTextureInfoWater.keyUseThisLayerType = "useWaterMask";
layeredTextureInfoWater.keyLayerBlendingEnabled = "waterMaskBlendingEnabled";
layeredTextureInfoWater.layerBlendingEnabled = chunk.owner()->blendWaterMask;
LayeredTexturePreprocessingData layeredTexturePreprocessingData;
layeredTexturePreprocessingData.layeredTextureInfo.push_back(
layeredTextureInfoHeight);
layeredTexturePreprocessingData.layeredTextureInfo.push_back(
layeredTextureInfoColor);
layeredTexturePreprocessingData.layeredTextureInfo.push_back(
layeredTextureInfoNight);
layeredTexturePreprocessingData.layeredTextureInfo.push_back(
layeredTextureInfoOverlay);
layeredTexturePreprocessingData.layeredTextureInfo.push_back(
layeredTextureInfoWater);
layeredTexturePreprocessingData.keyValuePairs.push_back(
std::pair<std::string, std::string>(
"useAtmosphere",
std::to_string(chunk.owner()->atmosphereEnabled)));
layeredTexturePreprocessingData.keyValuePairs.push_back(
std::pair<std::string, std::string>(
"showChunkEdges",
std::to_string(chunk.owner()->showChunkEdges)));
// Now the shader program can be accessed
ProgramObject* programObject =
layeredTextureShaderProvider->getUpdatedShaderProgram(
layeredTexturePreprocessingData);
// Activate the shader program
programObject->activate();
// Create all the texture units
std::vector<ghoul::opengl::TextureUnit> texUnitHeight;
std::vector<ghoul::opengl::TextureUnit> texUnitHeightParent1;
std::vector<ghoul::opengl::TextureUnit> texUnitHeightParent2;
texUnitHeight.resize(heightMapProviders.size());
texUnitHeightParent1.resize(heightMapProviders.size());
texUnitHeightParent2.resize(heightMapProviders.size());
std::vector<ghoul::opengl::TextureUnit> texUnitColor;
std::vector<ghoul::opengl::TextureUnit> texUnitColorParent1;
std::vector<ghoul::opengl::TextureUnit> texUnitColorParent2;
texUnitColor.resize(colorTextureProviders.size());
texUnitColorParent1.resize(colorTextureProviders.size());
texUnitColorParent2.resize(colorTextureProviders.size());
std::vector<ghoul::opengl::TextureUnit> texUnitNight;
std::vector<ghoul::opengl::TextureUnit> texUnitNightParent1;
std::vector<ghoul::opengl::TextureUnit> texUnitNightParent2;
texUnitNight.resize(nightTextureProviders.size());
texUnitNightParent1.resize(nightTextureProviders.size());
texUnitNightParent2.resize(nightTextureProviders.size());
std::vector<ghoul::opengl::TextureUnit> texUnitOverlay;
std::vector<ghoul::opengl::TextureUnit> texUnitOverlayParent1;
std::vector<ghoul::opengl::TextureUnit> texUnitOverlayParent2;
texUnitOverlay.resize(overlayProviders.size());
texUnitOverlayParent1.resize(overlayProviders.size());
texUnitOverlayParent2.resize(overlayProviders.size());
std::vector<ghoul::opengl::TextureUnit> texUnitWater;
std::vector<ghoul::opengl::TextureUnit> texUnitWaterParent1;
std::vector<ghoul::opengl::TextureUnit> texUnitWaterParent2;
texUnitWater.resize(waterMaskProviders.size());
texUnitWaterParent1.resize(waterMaskProviders.size());
texUnitWaterParent2.resize(waterMaskProviders.size());
// Go through all the height map providers
int i = 0;
for (auto it = heightMapProviders.begin(); it != heightMapProviders.end(); it++)
{
auto tileProvider = *it;
// Get the texture that should be used for rendering
TileAndTransform tileAndTransform = tileProvider->getHighestResolutionTile(chunkIndex);
if (tileAndTransform.tile.status == Tile::Status::Unavailable) {
// don't render if no tile was available
programObject->deactivate();
return nullptr;
}
TileDepthTransform depthTransform = tileProvider->depthTransform();
std::string indexedTileKey = "heightTiles[" + std::to_string(i) + "]";
setDepthTransformUniforms(programObject, indexedTileKey, depthTransform);
activateTileAndSetTileUniforms(programObject, texUnitHeight[i], indexedTileKey, tileAndTransform);
// If blending is enabled, two more textures are needed
if (layeredTextureInfoHeight.layerBlendingEnabled) {
TileAndTransform tileAndTransformParent1 = tileProvider->getHighestResolutionTile(chunkIndex, 1);
if (tileAndTransformParent1.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent1 = tileAndTransform;
}
std::string indexedTileKeyParent1 = "heightTilesParent1[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitHeightParent1[i], indexedTileKeyParent1, tileAndTransformParent1);
TileAndTransform tileAndTransformParent2 = tileProvider->getHighestResolutionTile(chunkIndex, 2);
if (tileAndTransformParent2.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent2 = tileAndTransformParent1;
}
std::string indexedTileKeyParent2 = "heightTilesParent2[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitHeightParent2[i], indexedTileKeyParent2, tileAndTransformParent2);
}
i++;
}
// Go through all the color texture providers
i = 0;
for (auto it = colorTextureProviders.begin(); it != colorTextureProviders.end(); it++)
{
auto tileProvider = *it;
TileAndTransform tileAndTransform = tileProvider->getHighestResolutionTile(chunkIndex);
if (tileAndTransform.tile.status == Tile::Status::Unavailable) {
// don't render if no tile was available
programObject->deactivate();
return nullptr;
}
std::string indexedTileKey = "colorTiles[" + std::to_string(i) + "]";
// Blend tile with two parents
// The texture needs a unit to sample from
activateTileAndSetTileUniforms(programObject, texUnitColor[i], indexedTileKey, tileAndTransform);
// If blending is enabled, two more textures are needed
if (layeredTextureInfoColor.layerBlendingEnabled) {
TileAndTransform tileAndTransformParent1 = tileProvider->getHighestResolutionTile(chunkIndex, 1);
if (tileAndTransformParent1.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent1 = tileAndTransform;
}
std::string indexedTileKeyParent1 = "colorTilesParent1[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitColorParent1[i], indexedTileKeyParent1, tileAndTransformParent1);
TileAndTransform tileAndTransformParent2 = tileProvider->getHighestResolutionTile(chunkIndex, 2);
if (tileAndTransformParent2.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent2 = tileAndTransformParent1;
}
std::string indexedTileKeyParent2 = "colorTilesParent2[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitColorParent2[i], indexedTileKeyParent2, tileAndTransformParent2);
}
i++;
}
// Go through all the night texture providers
i = 0;
for (auto it = nightTextureProviders.begin(); it != nightTextureProviders.end(); it++)
{
auto tileProvider = *it;
TileAndTransform tileAndTransform = tileProvider->getHighestResolutionTile(chunkIndex);
if (tileAndTransform.tile.status == Tile::Status::Unavailable) {
// don't render if no tile was available
programObject->deactivate();
return nullptr;
}
std::string indexedTileKey = "nightTiles[" + std::to_string(i) + "]";
// Blend tile with two parents
// The texture needs a unit to sample from
activateTileAndSetTileUniforms(programObject, texUnitNight[i], indexedTileKey, tileAndTransform);
// If blending is enabled, two more textures are needed
if (layeredTextureInfoNight.layerBlendingEnabled) {
TileAndTransform tileAndTransformParent1 = tileProvider->getHighestResolutionTile(chunkIndex, 1);
if (tileAndTransformParent1.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent1 = tileAndTransform;
}
std::string indexedTileKeyParent1 = "nightTilesParent1[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitNightParent1[i], indexedTileKeyParent1, tileAndTransformParent1);
TileAndTransform tileAndTransformParent2 = tileProvider->getHighestResolutionTile(chunkIndex, 2);
if (tileAndTransformParent2.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent2 = tileAndTransformParent1;
}
std::string indexedTileKeyParent2 = "nightTilesParent2[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitNightParent2[i], indexedTileKeyParent2, tileAndTransformParent2);
}
i++;
}
// Go through all the overlay providers
i = 0;
for (auto it = overlayProviders.begin(); it != overlayProviders.end(); it++)
{
auto tileProvider = *it;
TileAndTransform tileAndTransform = tileProvider->getHighestResolutionTile(chunkIndex);
if (tileAndTransform.tile.status == Tile::Status::Unavailable) {
// don't render if no tile was available
programObject->deactivate();
return nullptr;
}
std::string indexedTileKey = "overlayTiles[" + std::to_string(i) + "]";
// Blend tile with two parents
// The texture needs a unit to sample from
activateTileAndSetTileUniforms(programObject, texUnitOverlay[i], indexedTileKey, tileAndTransform);
// If blending is enabled, two more textures are needed
if (layeredTextureInfoOverlay.layerBlendingEnabled) {
TileAndTransform tileAndTransformParent1 = tileProvider->getHighestResolutionTile(chunkIndex, 1);
if (tileAndTransformParent1.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent1 = tileAndTransform;
}
std::string indexedTileKeyParent1 = "overlayTilesParent1[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitOverlayParent1[i], indexedTileKeyParent1, tileAndTransformParent1);
TileAndTransform tileAndTransformParent2 = tileProvider->getHighestResolutionTile(chunkIndex, 2);
if (tileAndTransformParent2.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent2 = tileAndTransformParent1;
}
std::string indexedTileKeyParent2 = "overlayTilesParent2[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitOverlayParent2[i], indexedTileKeyParent2, tileAndTransformParent2);
}
i++;
}
// Go through all the water mask providers
i = 0;
for (auto it = waterMaskProviders.begin(); it != waterMaskProviders.end(); it++)
{
auto tileProvider = *it;
TileAndTransform tileAndTransform = tileProvider->getHighestResolutionTile(chunkIndex);
if (tileAndTransform.tile.status == Tile::Status::Unavailable) {
// don't render if no tile was available
programObject->deactivate();
return nullptr;
}
std::string indexedTileKey = "waterTiles[" + std::to_string(i) + "]";
// Blend tile with two parents
// The texture needs a unit to sample from
activateTileAndSetTileUniforms(programObject, texUnitWater[i], indexedTileKey, tileAndTransform);
// If blending is enabled, two more textures are needed
if (layeredTextureInfoWater.layerBlendingEnabled) {
TileAndTransform tileAndTransformParent1 = tileProvider->getHighestResolutionTile(chunkIndex, 1);
if (tileAndTransformParent1.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent1 = tileAndTransform;
}
std::string indexedTileKeyParent1 = "waterTilesParent1[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitWaterParent1[i], indexedTileKeyParent1, tileAndTransformParent1);
TileAndTransform tileAndTransformParent2 = tileProvider->getHighestResolutionTile(chunkIndex, 2);
if (tileAndTransformParent2.tile.status == Tile::Status::Unavailable) {
tileAndTransformParent2 = tileAndTransformParent1;
}
std::string indexedTileKeyParent2 = "waterTilesParent2[" + std::to_string(i) + "]";
activateTileAndSetTileUniforms(programObject, texUnitWaterParent2[i], indexedTileKeyParent2, tileAndTransformParent2);
}
i++;
}
// The length of the skirts is proportional to its size
programObject->setUniform("skirtLength", min(static_cast<float>(chunk.surfacePatch().halfSize().lat * 1000000), 8700.0f));
programObject->setUniform("xSegments", _grid->xSegments());
return programObject;
}
void ChunkRenderer::renderChunkGlobally(const Chunk& chunk, const RenderData& data){
ProgramObject* programObject = getActivatedProgramWithTileData(_globalRenderingShaderProvider.get(), chunk);
if (programObject == nullptr) {
return;
}
auto heightMapProviders = _tileProviderManager->getActivatedLayerCategory("HeightMaps");
auto colorTextureProviders = _tileProviderManager->getActivatedLayerCategory("ColorTextures");
auto nightTextureProviders = _tileProviderManager->getActivatedLayerCategory("NightTextures");
auto overlayProviders = _tileProviderManager->getActivatedLayerCategory("Overlays");
auto waterMaskProviders = _tileProviderManager->getActivatedLayerCategory("WaterMasks");
const Ellipsoid& ellipsoid = chunk.owner()->ellipsoid();
// This information is only needed when doing blending
if ((heightMapProviders.size() > 0 && chunk.owner()->blendHeightMap) ||
(colorTextureProviders.size() > 0 && chunk.owner()->blendColorMap) ||
(nightTextureProviders.size() > 0 && chunk.owner()->blendNightTexture) ||
(overlayProviders.size() > 0 && chunk.owner()->blendOverlay) ||
(waterMaskProviders.size() > 0 && chunk.owner()->blendWaterMask)) {
float distanceScaleFactor = chunk.owner()->lodScaleFactor * ellipsoid.minimumRadius();
programObject->setUniform("cameraPosition", vec3(data.camera.positionVec3()));
programObject->setUniform("distanceScaleFactor", distanceScaleFactor);
programObject->setUniform("chunkLevel", chunk.index().level);
}
// Calculate other uniform variables needed for rendering
Geodetic2 swCorner = chunk.surfacePatch().southWestCorner();
auto patchSize = chunk.surfacePatch().size();
// TODO : Model transform should be fetched as a matrix directly.
dmat4 modelTransform = dmat4(chunk.owner()->stateMatrix()); // Rotation
modelTransform = translate(dmat4(1), data.position.dvec3()) * modelTransform; // Translation
dmat4 viewTransform = data.camera.combinedViewMatrix();
mat4 modelViewTransform = mat4(viewTransform * modelTransform);
mat4 modelViewProjectionTransform = data.camera.projectionMatrix() * modelViewTransform;
// Upload the uniform variables
programObject->setUniform("modelViewProjectionTransform", modelViewProjectionTransform);
programObject->setUniform("minLatLon", vec2(swCorner.toLonLatVec2()));
programObject->setUniform("lonLatScalingFactor", vec2(patchSize.toLonLatVec2()));
programObject->setUniform("radiiSquared", vec3(ellipsoid.radiiSquared()));
if (nightTextureProviders.size() > 0) {
programObject->setUniform("modelViewTransform", modelViewTransform);
}
// OpenGL rendering settings
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// render
_grid->geometry().drawUsingActiveProgram();
// disable shader
programObject->deactivate();
}
void ChunkRenderer::renderChunkLocally(const Chunk& chunk, const RenderData& data) {
ProgramObject* programObject = getActivatedProgramWithTileData(_localRenderingShaderProvider.get(), chunk);
if (programObject == nullptr) {
return;
}
using namespace glm;
auto heightMapProviders = _tileProviderManager->getActivatedLayerCategory("HeightMaps");
auto colorTextureProviders = _tileProviderManager->getActivatedLayerCategory("ColorTextures");
auto nightTextureProviders = _tileProviderManager->getActivatedLayerCategory("NightTextures");
auto overlayProviders = _tileProviderManager->getActivatedLayerCategory("Overlays");
auto waterMaskProviders = _tileProviderManager->getActivatedLayerCategory("WaterMasks");
const Ellipsoid& ellipsoid = chunk.owner()->ellipsoid();
if ((heightMapProviders.size() > 0 && chunk.owner()->blendHeightMap) ||
(colorTextureProviders.size() > 0 && chunk.owner()->blendColorMap) ||
(nightTextureProviders.size() > 0 && chunk.owner()->blendNightTexture) ||
(overlayProviders.size() > 0 && chunk.owner()->blendOverlay) ||
(waterMaskProviders.size() > 0 && chunk.owner()->blendWaterMask)) {
float distanceScaleFactor = chunk.owner()->lodScaleFactor * chunk.owner()->ellipsoid().minimumRadius();
programObject->setUniform("distanceScaleFactor", distanceScaleFactor);
programObject->setUniform("chunkLevel", chunk.index().level);
}
// Calculate other uniform variables needed for rendering
// TODO : Model transform should be fetched as a matrix directly.
dmat4 modelTransform = translate(dmat4(1), data.position.dvec3());
dmat4 viewTransform = data.camera.combinedViewMatrix();
dmat4 modelViewTransform = viewTransform * modelTransform;
Geodetic2 sw = chunk.surfacePatch().southWestCorner();
Geodetic2 se = chunk.surfacePatch().southEastCorner();
Geodetic2 nw = chunk.surfacePatch().northWestCorner();
Geodetic2 ne = chunk.surfacePatch().northEastCorner();
// Get model space positions of the four control points
Vec3 patchSwModelSpace = ellipsoid.cartesianSurfacePosition(sw);
Vec3 patchSeModelSpace = ellipsoid.cartesianSurfacePosition(se);
Vec3 patchNwModelSpace = ellipsoid.cartesianSurfacePosition(nw);
Vec3 patchNeModelSpace = ellipsoid.cartesianSurfacePosition(ne);
// Transform all control points to camera space
Vec3 patchSwCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchSwModelSpace, 1));
Vec3 patchSeCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchSeModelSpace, 1));
Vec3 patchNwCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchNwModelSpace, 1));
Vec3 patchNeCameraSpace = Vec3(dmat4(modelViewTransform) * glm::dvec4(patchNeModelSpace, 1));
// Send control points to shader
programObject->setUniform("p00", vec3(patchSwCameraSpace));
programObject->setUniform("p10", vec3(patchSeCameraSpace));
programObject->setUniform("p01", vec3(patchNwCameraSpace));
programObject->setUniform("p11", vec3(patchNeCameraSpace));
vec3 patchNormalCameraSpace = normalize(
cross(patchSeCameraSpace - patchSwCameraSpace,
patchNwCameraSpace - patchSwCameraSpace));
programObject->setUniform("patchNormalCameraSpace", patchNormalCameraSpace);
programObject->setUniform("projectionTransform", data.camera.projectionMatrix());
// OpenGL rendering settings
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// render
_grid->geometry().drawUsingActiveProgram();
// disable shader
programObject->deactivate();
}
} // namespace openspace