Files
OpenSpace/modules/atmosphere/rendering/atmospheredeferredcaster.cpp

1436 lines
56 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2021 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
/***************************************************************************************
* Modified part of the code (4D texture mechanism) from Eric Bruneton is used in the
* following code.
****************************************************************************************/
/**
* Precomputed Atmospheric Scattering
* Copyright (c) 2008 INRIA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <modules/atmosphere/rendering/atmospheredeferredcaster.h>
#include <openspace/engine/globals.h>
#include <openspace/query/query.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/scene/scene.h>
#include <openspace/util/spicemanager.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/opengl/openglstatecache.h>
#include <cmath>
#include <fstream>
namespace {
constexpr const char* _loggerCat = "AtmosphereDeferredcaster";
constexpr const std::array<const char*, 27> UniformNames = {
"cullAtmosphere", "Rg", "Rt", "groundRadianceEmission", "HR", "betaRayleigh",
"HM", "betaMieExtinction", "mieG", "sunRadiance", "ozoneLayerEnabled", "HO",
"betaOzoneExtinction", "SAMPLES_R", "SAMPLES_MU", "SAMPLES_MU_S", "SAMPLES_NU",
"dInverseModelTransformMatrix", "dModelTransformMatrix",
"dSgctProjectionToModelTransformMatrix", "dSGCTViewToWorldMatrix", "dCamPosObj",
"sunDirectionObj", "hardShadows", "transmittanceTexture", "irradianceTexture",
"inscatterTexture"
};
constexpr const float ATM_EPS = 2000.f;
constexpr const float KM_TO_M = 1000.f;
void createRenderQuad(GLuint* vao, GLuint* vbo, GLfloat size) {
glGenVertexArrays(1, vao);
glGenBuffers(1, vbo);
glBindVertexArray(*vao);
glBindBuffer(GL_ARRAY_BUFFER, *vbo);
const GLfloat VertexData[] = {
// x y z w
-size, -size, 0.f, 1.f,
size, size, 0.f, 1.f,
-size, size, 0.f, 1.f,
-size, -size, 0.f, 1.f,
size, -size, 0.f, 1.f,
size, size, 0.f, 1.f
};
glBufferData(GL_ARRAY_BUFFER, sizeof(VertexData), VertexData, GL_STATIC_DRAW);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 4 * sizeof(GLfloat), nullptr);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
}
void saveTextureFile(GLenum colorBufferAttachment,
const std::filesystem::path& fileName, const glm::ivec2& size)
{
std::fstream ppmFile;
ppmFile.open(fileName, std::fstream::out);
if (!ppmFile.is_open()) {
return;
}
std::vector<unsigned char> px(
size.x * size.y * 3,
static_cast<unsigned char>(255)
);
if (colorBufferAttachment != GL_DEPTH_ATTACHMENT) {
glReadBuffer(colorBufferAttachment);
glReadPixels(0, 0, size.x, size.y, GL_RGB, GL_UNSIGNED_BYTE, px.data());
}
else {
glReadPixels(
0,
0,
size.x,
size.y,
GL_DEPTH_COMPONENT,
GL_UNSIGNED_BYTE,
px.data()
);
}
ppmFile << "P3" << '\n' << size.x << " " << size.y << '\n' << "255" << '\n';
int k = 0;
for (int i = 0; i < size.x; i++) {
for (int j = 0; j < size.y; j++) {
ppmFile << static_cast<unsigned int>(px[k]) << ' '
<< static_cast<unsigned int>(px[k + 1]) << ' '
<< static_cast<unsigned int>(px[k + 2]) << ' ';
k += 3;
}
ppmFile << '\n';
}
}
bool isAtmosphereInFrustum(const glm::dmat4& MVMatrix, const glm::dvec3& position,
double radius)
{
// Frustum Planes
glm::dvec3 col1 = glm::dvec3(MVMatrix[0][0], MVMatrix[1][0], MVMatrix[2][0]);
glm::dvec3 col2 = glm::dvec3(MVMatrix[0][1], MVMatrix[1][1], MVMatrix[2][1]);
glm::dvec3 col3 = glm::dvec3(MVMatrix[0][2], MVMatrix[1][2], MVMatrix[2][2]);
glm::dvec3 col4 = glm::dvec3(MVMatrix[0][3], MVMatrix[1][3], MVMatrix[2][3]);
glm::dvec3 leftNormal = col4 + col1;
glm::dvec3 rightNormal = col4 - col1;
glm::dvec3 bottomNormal = col4 + col2;
glm::dvec3 topNormal = col4 - col2;
glm::dvec3 nearNormal = col3 + col4;
glm::dvec3 farNormal = col4 - col3;
// Plane Distances
double leftDistance = MVMatrix[3][3] + MVMatrix[3][0];
double rightDistance = MVMatrix[3][3] - MVMatrix[3][0];
double bottomDistance = MVMatrix[3][3] + MVMatrix[3][1];
double topDistance = MVMatrix[3][3] - MVMatrix[3][1];
double nearDistance = MVMatrix[3][3] + MVMatrix[3][2];
// Normalize Planes
const double invLeftMag = 1.0 / glm::length(leftNormal);
leftNormal *= invLeftMag;
leftDistance *= invLeftMag;
const double invRightMag = 1.0 / glm::length(rightNormal);
rightNormal *= invRightMag;
rightDistance *= invRightMag;
const double invBottomMag = 1.0 / glm::length(bottomNormal);
bottomNormal *= invBottomMag;
bottomDistance *= invBottomMag;
const double invTopMag = 1.0 / glm::length(topNormal);
topNormal *= invTopMag;
topDistance *= invTopMag;
const double invNearMag = 1.0 / glm::length(nearNormal);
nearNormal *= invNearMag;
nearDistance *= invNearMag;
const double invFarMag = 1.0 / glm::length(farNormal);
farNormal *= invFarMag;
if (((glm::dot(leftNormal, position) + leftDistance) < -radius) ||
((glm::dot(rightNormal, position) + rightDistance) < -radius) ||
((glm::dot(bottomNormal, position) + bottomDistance) < -radius) ||
((glm::dot(topNormal, position) + topDistance) < -radius) ||
((glm::dot(nearNormal, position) + nearDistance) < -radius))
// The far plane testing is disabled because the atm has no depth.
{
return false;
}
return true;
}
void renderQuadForCalc(GLuint vao, GLsizei numberOfVertices) {
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, numberOfVertices);
glBindVertexArray(0);
}
} // namespace
namespace openspace {
void AtmosphereDeferredcaster::initialize() {
ZoneScoped
if (!_atmosphereCalculated) {
preCalculateAtmosphereParam();
}
std::memset(_uniformNameBuffer, 0, sizeof(_uniformNameBuffer));
std::strcpy(_uniformNameBuffer, "shadowDataArray[");
}
void AtmosphereDeferredcaster::deinitialize() {
ZoneScoped
_transmittanceProgramObject = nullptr;
_irradianceProgramObject = nullptr;
_irradianceSupTermsProgramObject = nullptr;
_inScatteringProgramObject = nullptr;
_inScatteringSupTermsProgramObject = nullptr;
_deltaEProgramObject = nullptr;
_deltaSProgramObject = nullptr;
_deltaSSupTermsProgramObject = nullptr;
_deltaJProgramObject = nullptr;
glDeleteTextures(1, &_transmittanceTableTexture);
glDeleteTextures(1, &_irradianceTableTexture);
glDeleteTextures(1, &_inScatteringTableTexture);
glDeleteTextures(1, &_deltaETableTexture);
glDeleteTextures(1, &_deltaSRayleighTableTexture);
glDeleteTextures(1, &_deltaSMieTableTexture);
glDeleteTextures(1, &_deltaJTableTexture);
}
void AtmosphereDeferredcaster::preRaycast(const RenderData& renderData,
const DeferredcastData&,
ghoul::opengl::ProgramObject& program)
{
ZoneScoped
// Atmosphere Frustum Culling
glm::dvec3 tPlanetPosWorld = glm::dvec3(
_modelTransform * glm::dvec4(0.0, 0.0, 0.0, 1.0)
);
const double distance = glm::distance(
tPlanetPosWorld,
renderData.camera.eyePositionVec3()
);
// Radius is in KM
const double scaledRadius = glm::length(
glm::dmat3(_modelTransform) * glm::dvec3(KM_TO_M * _atmosphereRadius, 0.0, 0.0)
);
// Number of planet radii to use as distance threshold for culling
const double DISTANCE_CULLING_RADII = 5000;
if (distance > scaledRadius * DISTANCE_CULLING_RADII) {
program.setUniform(_uniformCache.cullAtmosphere, 1);
}
else {
glm::dmat4 MV = glm::dmat4(renderData.camera.sgctInternal.projectionMatrix()) *
renderData.camera.combinedViewMatrix();
const double totalAtmosphere = (scaledRadius + ATM_EPS);
if (!isAtmosphereInFrustum(MV, tPlanetPosWorld, totalAtmosphere)) {
program.setUniform(_uniformCache.cullAtmosphere, 1);
}
else {
program.setUniform(_uniformCache.cullAtmosphere, 0);
program.setUniform(_uniformCache.Rg, _atmospherePlanetRadius);
program.setUniform(_uniformCache.Rt, _atmosphereRadius);
program.setUniform(
_uniformCache.groundRadianceEmission,
_planetGroundRadianceEmission
);
program.setUniform(_uniformCache.HR, _rayleighHeightScale);
program.setUniform(_uniformCache.betaRayleigh, _rayleighScatteringCoeff);
program.setUniform(_uniformCache.HM, _mieHeightScale);
program.setUniform(_uniformCache.betaMieExtinction, _mieExtinctionCoeff);
program.setUniform(_uniformCache.mieG, _miePhaseConstant);
program.setUniform(_uniformCache.sunRadiance, _sunRadianceIntensity);
program.setUniform(_uniformCache.ozoneLayerEnabled, _ozoneEnabled);
program.setUniform(_uniformCache.HO, _ozoneHeightScale);
program.setUniform(_uniformCache.betaOzoneExtinction, _ozoneExtinctionCoeff);
program.setUniform(_uniformCache.SAMPLES_R, _r_samples);
program.setUniform(_uniformCache.SAMPLES_MU, _mu_samples);
program.setUniform(_uniformCache.SAMPLES_MU_S, _mu_s_samples);
program.setUniform(_uniformCache.SAMPLES_NU, _nu_samples);
// Object Space
glm::dmat4 inverseModelMatrix = glm::inverse(_modelTransform);
program.setUniform(
_uniformCache.dInverseModelTransformMatrix,
inverseModelMatrix
);
program.setUniform(_uniformCache.dModelTransformMatrix, _modelTransform);
// Eye Space in SGCT to Eye Space in OS (SGCT View to OS Camera Rig)
// glm::dmat4 dSgctEye2OSEye = glm::inverse(
// glm::dmat4(renderData.camera.viewMatrix()));
glm::dmat4 dSGCTViewToWorldMatrix = glm::inverse(
renderData.camera.combinedViewMatrix()
);
// Eye Space in SGCT to OS World Space
program.setUniform(
_uniformCache.dSGCTViewToWorldMatrix,
dSGCTViewToWorldMatrix
);
// SGCT Projection to SGCT Eye Space
glm::dmat4 dInverseProjection = glm::inverse(
glm::dmat4(renderData.camera.projectionMatrix())
);
glm::dmat4 inverseWholeMatrixPipeline =
inverseModelMatrix * dSGCTViewToWorldMatrix * dInverseProjection;
program.setUniform(
_uniformCache.dSgctProjectionToModelTransformMatrix,
inverseWholeMatrixPipeline
);
glm::dvec4 camPosObjCoords =
inverseModelMatrix * glm::dvec4(renderData.camera.eyePositionVec3(), 1.0);
program.setUniform(_uniformCache.dCamPosObj, camPosObjCoords);
double lt;
glm::dvec3 sunPosWorld = SpiceManager::ref().targetPosition(
"SUN",
"SUN",
"GALACTIC",
{},
_time,
lt
);
glm::dvec4 sunPosObj;
// Sun following camera position
if (_sunFollowingCameraEnabled) {
sunPosObj = inverseModelMatrix * glm::dvec4(
renderData.camera.eyePositionVec3(),
1.0
);
}
else {
sunPosObj = inverseModelMatrix *
glm::dvec4(sunPosWorld - renderData.modelTransform.translation, 1.0);
}
// Sun Position in Object Space
program.setUniform(
_uniformCache.sunDirectionObj,
glm::normalize(glm::dvec3(sunPosObj))
);
// Shadow calculations..
if (!_shadowConfArray.empty()) {
ZoneScopedN("Shadow Configuration")
_shadowDataArrayCache.clear();
for (const ShadowConfiguration& shadowConf : _shadowConfArray) {
// TO REMEMBER: all distances and lengths in world coordinates are in
// meters!!! We need to move this to view space...
// Getting source and caster:
glm::dvec3 sourcePos = SpiceManager::ref().targetPosition(
shadowConf.source.first,
"SUN",
"GALACTIC",
{},
_time,
lt
);
sourcePos *= KM_TO_M; // converting to meters
glm::dvec3 casterPos = SpiceManager::ref().targetPosition(
shadowConf.caster.first,
"SUN",
"GALACTIC",
{},
_time,
lt
);
casterPos *= KM_TO_M; // converting to meters
SceneGraphNode* sourceNode = sceneGraphNode(shadowConf.source.first);
SceneGraphNode* casterNode = sceneGraphNode(shadowConf.caster.first);
if ((sourceNode == nullptr) || (casterNode == nullptr)) {
LERRORC(
"AtmosphereDeferredcaster",
"Invalid scenegraph node for the shadow's caster or shadow's "
"receiver"
);
return;
}
const double sourceRadiusScale = std::max(
glm::compMax(sourceNode->scale()),
1.0
);
const double casterRadiusScale = std::max(
glm::compMax(casterNode->scale()),
1.0
);
// First we determine if the caster is shadowing the current planet
// (all calculations in World Coordinates):
glm::dvec3 planetCasterVec =
casterPos - renderData.modelTransform.translation;
glm::dvec3 sourceCasterVec = casterPos - sourcePos;
double sc_length = glm::length(sourceCasterVec);
glm::dvec3 planetCaster_proj = (
glm::dot(planetCasterVec, sourceCasterVec) /
(sc_length*sc_length)) * sourceCasterVec;
double d_test = glm::length(planetCasterVec - planetCaster_proj);
double xp_test = shadowConf.caster.second * casterRadiusScale *
sc_length /
(shadowConf.source.second * sourceRadiusScale +
shadowConf.caster.second * casterRadiusScale);
double rp_test = shadowConf.caster.second * casterRadiusScale *
(glm::length(planetCaster_proj) + xp_test) / xp_test;
double casterDistSun = glm::length(casterPos - sunPosWorld);
double planetDistSun = glm::length(
renderData.modelTransform.translation - sunPosWorld
);
ShadowRenderingStruct shadowData;
shadowData.isShadowing = false;
if (((d_test - rp_test) < (_atmospherePlanetRadius * KM_TO_M)) &&
(casterDistSun < planetDistSun))
{
// The current caster is shadowing the current planet
shadowData.isShadowing = true;
shadowData.rs = shadowConf.source.second * sourceRadiusScale;
shadowData.rc = shadowConf.caster.second * casterRadiusScale;
shadowData.sourceCasterVec = glm::normalize(sourceCasterVec);
shadowData.xp = xp_test;
shadowData.xu =
shadowData.rc * sc_length / (shadowData.rs - shadowData.rc);
shadowData.casterPositionVec = casterPos;
}
_shadowDataArrayCache.push_back(shadowData);
}
// _uniformNameBuffer[0..15] = "shadowDataArray["
unsigned int counter = 0;
for (const ShadowRenderingStruct& sd : _shadowDataArrayCache) {
// Add the counter
char* bf = fmt::format_to(_uniformNameBuffer + 16, "{}", counter);
std::strcpy(bf, "].isShadowing\0");
program.setUniform(_uniformNameBuffer, sd.isShadowing);
if (sd.isShadowing) {
std::strcpy(bf, "].xp\0");
program.setUniform(_uniformNameBuffer, sd.xp);
std::strcpy(bf, "].xu\0");
program.setUniform(_uniformNameBuffer, sd.xu);
std::strcpy(bf, "].rc\0");
program.setUniform(_uniformNameBuffer, sd.rc);
std::strcpy(bf, "].sourceCasterVec\0");
program.setUniform(_uniformNameBuffer, sd.sourceCasterVec);
std::strcpy(bf, "].casterPositionVec\0");
program.setUniform(_uniformNameBuffer, sd.casterPositionVec);
}
counter++;
}
program.setUniform(_uniformCache.hardShadows, _hardShadowsEnabled);
}
}
}
_transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
program.setUniform(
_uniformCache.transmittanceTexture,
_transmittanceTableTextureUnit
);
_irradianceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _irradianceTableTexture);
program.setUniform(_uniformCache.irradianceTexture, _irradianceTableTextureUnit);
_inScatteringTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _inScatteringTableTexture);
program.setUniform(_uniformCache.inscatterTexture, _inScatteringTableTextureUnit);
}
void AtmosphereDeferredcaster::postRaycast(const RenderData&, const DeferredcastData&,
ghoul::opengl::ProgramObject&)
{
ZoneScoped
// Deactivate the texture units
_transmittanceTableTextureUnit.deactivate();
_irradianceTableTextureUnit.deactivate();
_inScatteringTableTextureUnit.deactivate();
}
std::filesystem::path AtmosphereDeferredcaster::deferredcastPath() const {
return absPath("${MODULE_ATMOSPHERE}/shaders/atmosphere_deferred_fs.glsl");
}
std::filesystem::path AtmosphereDeferredcaster::deferredcastFSPath() const {
return absPath("${MODULE_ATMOSPHERE}/shaders/atmosphere_deferred_fs.glsl");
}
std::filesystem::path AtmosphereDeferredcaster::deferredcastVSPath() const {
return absPath("${MODULE_ATMOSPHERE}/shaders/atmosphere_deferred_vs.glsl");
}
std::filesystem::path AtmosphereDeferredcaster::helperPath() const {
return ""; // no helper file
}
void AtmosphereDeferredcaster::initializeCachedVariables(
ghoul::opengl::ProgramObject& program)
{
ghoul::opengl::updateUniformLocations(program, _uniformCache, UniformNames);
}
void AtmosphereDeferredcaster::update(const UpdateData&) {}
void AtmosphereDeferredcaster::setModelTransform(glm::dmat4 transform) {
_modelTransform = std::move(transform);
}
void AtmosphereDeferredcaster::setTime(double time) {
_time = time;
}
void AtmosphereDeferredcaster::setAtmosphereRadius(float atmRadius) {
_atmosphereRadius = atmRadius;
}
void AtmosphereDeferredcaster::setPlanetRadius(float planetRadius) {
_atmospherePlanetRadius = planetRadius;
}
void AtmosphereDeferredcaster::setPlanetAverageGroundReflectance(
float averageGReflectance)
{
_planetAverageGroundReflectance = averageGReflectance;
}
void AtmosphereDeferredcaster::setPlanetGroundRadianceEmission(
float groundRadianceEmission)
{
_planetGroundRadianceEmission = groundRadianceEmission;
}
void AtmosphereDeferredcaster::setRayleighHeightScale(float rayleighHeightScale) {
_rayleighHeightScale = rayleighHeightScale;
}
void AtmosphereDeferredcaster::enableOzone(bool enable) {
_ozoneEnabled = enable;
}
void AtmosphereDeferredcaster::setOzoneHeightScale(float ozoneHeightScale) {
_ozoneHeightScale = ozoneHeightScale;
}
void AtmosphereDeferredcaster::setMieHeightScale(float mieHeightScale) {
_mieHeightScale = mieHeightScale;
}
void AtmosphereDeferredcaster::setMiePhaseConstant(float miePhaseConstant) {
_miePhaseConstant = miePhaseConstant;
}
void AtmosphereDeferredcaster::setSunRadianceIntensity(float sunRadiance) {
_sunRadianceIntensity = sunRadiance;
}
void AtmosphereDeferredcaster::setRayleighScatteringCoefficients(glm::vec3 rayScattCoeff)
{
_rayleighScatteringCoeff = std::move(rayScattCoeff);
}
void AtmosphereDeferredcaster::setOzoneExtinctionCoefficients(glm::vec3 ozoneExtCoeff) {
_ozoneExtinctionCoeff = std::move(ozoneExtCoeff);
}
void AtmosphereDeferredcaster::setMieScatteringCoefficients(glm::vec3 mieScattCoeff) {
_mieScatteringCoeff = std::move(mieScattCoeff);
}
void AtmosphereDeferredcaster::setMieExtinctionCoefficients(glm::vec3 mieExtCoeff) {
_mieExtinctionCoeff = std::move(mieExtCoeff);
}
void AtmosphereDeferredcaster::setEllipsoidRadii(glm::dvec3 radii) {
_ellipsoidRadii = std::move(radii);
}
void AtmosphereDeferredcaster::setHardShadows(bool enabled) {
_hardShadowsEnabled = enabled;
}
void AtmosphereDeferredcaster::setShadowConfigArray(
std::vector<ShadowConfiguration> shadowConfigArray)
{
_shadowConfArray = std::move(shadowConfigArray);
_shadowDataArrayCache.clear();
_shadowDataArrayCache.reserve(_shadowConfArray.size());
}
void AtmosphereDeferredcaster::enableSunFollowing(bool enable) {
_sunFollowingCameraEnabled = enable;
}
void AtmosphereDeferredcaster::setPrecalculationTextureScale(
float preCalculatedTexturesScale)
{
_transmittanceTableSize *= static_cast<unsigned int>(preCalculatedTexturesScale);
_irradianceTableSize *= static_cast<unsigned int>(preCalculatedTexturesScale);
_deltaETableSize *= static_cast<unsigned int>(preCalculatedTexturesScale);
_r_samples *= static_cast<unsigned int>(preCalculatedTexturesScale);
_mu_samples *= static_cast<unsigned int>(preCalculatedTexturesScale);
_mu_s_samples *= static_cast<unsigned int>(preCalculatedTexturesScale);
_nu_samples *= static_cast<unsigned int>(preCalculatedTexturesScale);
}
void AtmosphereDeferredcaster::enablePrecalculationTexturesSaving() {
_saveCalculationTextures = true;
}
void AtmosphereDeferredcaster::loadComputationPrograms() {
//
// Transmittance T
if (!_transmittanceProgramObject) {
_transmittanceProgramObject = ghoul::opengl::ProgramObject::Build(
"transmittanceCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/transmittance_calc_fs.glsl")
);
}
using IgnoreError = ghoul::opengl::ProgramObject::IgnoreError;
_transmittanceProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//
// Irradiance E
if (!_irradianceProgramObject) {
_irradianceProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/irradiance_calc_fs.glsl")
);
}
_irradianceProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (!_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceSupTermsCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/irradiance_sup_calc_fs.glsl")
);
}
_irradianceSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//
// InScattering S
if (!_inScatteringProgramObject) {
_inScatteringProgramObject = ghoul::opengl::ProgramObject::Build(
"inScatteringCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/inScattering_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
}
_inScatteringProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (!_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"inScatteringSupTermsCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
}
_inScatteringSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//
// Delta E
if (!_deltaEProgramObject) {
_deltaEProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaECalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaE_calc_fs.glsl")
);
}
_deltaEProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//
// Irradiance finel E
if (!_irradianceFinalProgramObject) {
_irradianceFinalProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceEFinalProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/irradiance_final_fs.glsl")
);
}
_irradianceFinalProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//
// Delta S
if (!_deltaSProgramObject) {
_deltaSProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaSCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaS_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
}
_deltaSProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (!_deltaSSupTermsProgramObject) {
_deltaSSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaSSUPTermsCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
}
_deltaSSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//
// Delta J (Radiance Scattered)
if (!_deltaJProgramObject) {
_deltaJProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaJCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
}
_deltaJProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
}
void AtmosphereDeferredcaster::unloadComputationPrograms() {
_transmittanceProgramObject = nullptr;
_irradianceProgramObject = nullptr;
_irradianceSupTermsProgramObject = nullptr;
_inScatteringProgramObject = nullptr;
_inScatteringSupTermsProgramObject = nullptr;
_deltaEProgramObject = nullptr;
_irradianceFinalProgramObject = nullptr;
_deltaSProgramObject = nullptr;
_deltaSSupTermsProgramObject = nullptr;
_deltaJProgramObject = nullptr;
}
void AtmosphereDeferredcaster::createComputationTextures() {
if (!_atmosphereCalculated) {
//
// Transmittance
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
transmittanceTableTextureUnit.activate();
glGenTextures(1, &_transmittanceTableTexture);
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Stopped using a buffer object for GL_PIXEL_UNPACK_BUFFER
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGB32F,
_transmittanceTableSize.x,
_transmittanceTableSize.y,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
//
// Irradiance
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
irradianceTableTextureUnit.activate();
glGenTextures(1, &_irradianceTableTexture);
glBindTexture(GL_TEXTURE_2D, _irradianceTableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGB32F,
_irradianceTableSize.x,
_irradianceTableSize.y,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
//
// InScattering
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
inScatteringTableTextureUnit.activate();
glGenTextures(1, &_inScatteringTableTexture);
glBindTexture(GL_TEXTURE_3D, _inScatteringTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(
GL_TEXTURE_3D,
0,
GL_RGBA32F,
_mu_s_samples * _nu_samples,
_mu_samples,
_r_samples,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
}
//
// Delta E
ghoul::opengl::TextureUnit deltaETableTextureUnit;
deltaETableTextureUnit.activate();
glGenTextures(1, &_deltaETableTexture);
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGB32F,
_deltaETableSize.x,
_deltaETableSize.y,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
//
// Delta S
ghoul::opengl::TextureUnit deltaSRayleighTableTextureUnit;
deltaSRayleighTableTextureUnit.activate();
glGenTextures(1, &_deltaSRayleighTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(
GL_TEXTURE_3D,
0,
GL_RGB32F,
_mu_s_samples * _nu_samples,
_mu_samples,
_r_samples,
0, GL_RGB,
GL_FLOAT,
nullptr
);
ghoul::opengl::TextureUnit deltaSMieTableTextureUnit;
deltaSMieTableTextureUnit.activate();
glGenTextures(1, &_deltaSMieTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(
GL_TEXTURE_3D,
0,
GL_RGB32F,
_mu_s_samples * _nu_samples,
_mu_samples,
_r_samples,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
//
// Delta J (Radiance Scattered)
ghoul::opengl::TextureUnit deltaJTableTextureUnit;
deltaJTableTextureUnit.activate();
glGenTextures(1, &_deltaJTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaJTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(
GL_TEXTURE_3D,
0,
GL_RGB32F,
_mu_s_samples * _nu_samples,
_mu_samples,
_r_samples,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
}
void AtmosphereDeferredcaster::deleteComputationTextures() {
glDeleteTextures(1, &_transmittanceTableTexture);
_transmittanceTableTexture = 0;
glDeleteTextures(1, &_irradianceTableTexture);
_irradianceTableTexture = 0;
glDeleteTextures(1, &_inScatteringTableTexture);
_inScatteringTableTexture = 0;
glDeleteTextures(1, &_deltaETableTexture);
_deltaETableTexture = 0;
glDeleteTextures(1, &_deltaSRayleighTableTexture);
_deltaSRayleighTableTexture = 0;
glDeleteTextures(1, &_deltaSMieTableTexture);
_deltaSMieTableTexture = 0;
glDeleteTextures(1, &_deltaJTableTexture);
_deltaJTableTexture = 0;
}
void AtmosphereDeferredcaster::deleteUnusedComputationTextures() {
glDeleteTextures(1, &_deltaETableTexture);
_deltaETableTexture = 0;
glDeleteTextures(1, &_deltaSRayleighTableTexture);
_deltaSRayleighTableTexture = 0;
glDeleteTextures(1, &_deltaSMieTableTexture);
_deltaSMieTableTexture = 0;
glDeleteTextures(1, &_deltaJTableTexture);
_deltaJTableTexture = 0;
}
void AtmosphereDeferredcaster::executeCalculations(GLuint quadCalcVAO,
GLenum drawBuffers[1],
GLsizei vertexSize)
{
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
ghoul::opengl::TextureUnit deltaETableTextureUnit;
ghoul::opengl::TextureUnit deltaSRayleighTableTextureUnit;
ghoul::opengl::TextureUnit deltaSMieTableTextureUnit;
ghoul::opengl::TextureUnit deltaJTableTextureUnit;
glDisable(GL_BLEND);
// See Precomputed Atmosphere Scattering from Bruneton et al. paper, algorithm 4.1:
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_transmittanceTableTexture,
0
);
glViewport(0, 0, _transmittanceTableSize.x, _transmittanceTableSize.y);
_transmittanceProgramObject->activate();
loadAtmosphereDataIntoShaderProgram(*_transmittanceProgramObject);
static const float Black[] = { 0.f, 0.f, 0.f, 0.f };
glClearBufferfv(GL_COLOR, 0, Black);
renderQuadForCalc(quadCalcVAO, vertexSize);
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
"transmittance_texture.ppm",
_transmittanceTableSize
);
}
_transmittanceProgramObject->deactivate();
// line 2 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaETableTexture, 0);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
_irradianceProgramObject->activate();
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_irradianceProgramObject->setUniform(
"transmittanceTexture",
transmittanceTableTextureUnit
);
loadAtmosphereDataIntoShaderProgram(*_irradianceProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(quadCalcVAO, vertexSize);
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
"deltaE_table_texture.ppm",
_deltaETableSize
);
}
_irradianceProgramObject->deactivate();
// line 3 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_deltaSRayleighTableTexture,
0
);
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT1,
_deltaSMieTableTexture,
0
);
GLenum colorBuffers[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, colorBuffers);
glViewport(0, 0, _mu_s_samples * _nu_samples, _mu_samples);
_inScatteringProgramObject->activate();
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_inScatteringProgramObject->setUniform(
"transmittanceTexture",
transmittanceTableTextureUnit
);
loadAtmosphereDataIntoShaderProgram(*_inScatteringProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < _r_samples; ++layer) {
step3DTexture(*_inScatteringProgramObject, layer, true);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
"deltaS_rayleigh_texture.ppm",
glm::ivec2(_mu_s_samples * _nu_samples, _mu_samples)
);
saveTextureFile(
GL_COLOR_ATTACHMENT1,
"deltaS_mie_texture.ppm",
glm::ivec2(_mu_s_samples * _nu_samples, _mu_samples)
);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, 0, 0);
glDrawBuffers(1, drawBuffers);
_inScatteringProgramObject->deactivate();
// line 4 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_irradianceTableTexture,
0
);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
_deltaEProgramObject->activate();
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_deltaEProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
loadAtmosphereDataIntoShaderProgram(*_deltaEProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(quadCalcVAO, vertexSize);
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
"irradiance_texture.ppm",
_deltaETableSize
);
}
_deltaEProgramObject->deactivate();
// line 5 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_inScatteringTableTexture,
0
);
glViewport(0, 0, _mu_s_samples * _nu_samples, _mu_samples);
_deltaSProgramObject->activate();
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_deltaSProgramObject->setUniform("deltaSRTexture", deltaSRayleighTableTextureUnit);
_deltaSProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(*_deltaSProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < _r_samples; ++layer) {
step3DTexture(*_deltaSProgramObject, layer, false);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
"S_texture.ppm",
glm::ivec2(_mu_s_samples * _nu_samples, _mu_samples)
);
}
_deltaSProgramObject->deactivate();
// loop in line 6 in algorithm 4.1
for (int scatteringOrder = 2; scatteringOrder <= 4; ++scatteringOrder) {
// line 7 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_deltaJTableTexture,
0
);
glViewport(0, 0, _mu_s_samples * _nu_samples, _mu_samples);
_deltaJProgramObject->activate();
if (scatteringOrder == 2) {
_deltaJProgramObject->setUniform("firstIteraction", 1);
}
else {
_deltaJProgramObject->setUniform("firstIteraction", 0);
}
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_deltaJProgramObject->setUniform(
"transmittanceTexture",
transmittanceTableTextureUnit
);
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_deltaJProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
_deltaJProgramObject->setUniform(
"deltaSRTexture",
deltaSRayleighTableTextureUnit
);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_deltaJProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(*_deltaJProgramObject);
for (int layer = 0; layer < _r_samples; ++layer) {
step3DTexture(*_deltaJProgramObject, layer, true);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
fmt::format("deltaJ_texture-scattering_order-{}.ppm", scatteringOrder),
glm::ivec2(_mu_s_samples * _nu_samples, _mu_samples)
);
}
_deltaJProgramObject->deactivate();
// line 8 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_deltaETableTexture,
0
);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
_irradianceSupTermsProgramObject->activate();
if (scatteringOrder == 2) {
_irradianceSupTermsProgramObject->setUniform("firstIteraction", 1);
}
else {
_irradianceSupTermsProgramObject->setUniform("firstIteraction", 0);
}
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_irradianceSupTermsProgramObject->setUniform(
"transmittanceTexture",
transmittanceTableTextureUnit
);
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
_irradianceSupTermsProgramObject->setUniform(
"deltaSRTexture",
deltaSRayleighTableTextureUnit
);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_irradianceSupTermsProgramObject->setUniform(
"deltaSMTexture",
deltaSMieTableTextureUnit
);
loadAtmosphereDataIntoShaderProgram(*_irradianceSupTermsProgramObject);
renderQuadForCalc(quadCalcVAO, vertexSize);
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
fmt::format("deltaE_texture-scattering_order-{}.ppm", scatteringOrder),
_deltaETableSize
);
}
_irradianceSupTermsProgramObject->deactivate();
// line 9 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_deltaSRayleighTableTexture,
0
);
glViewport(0, 0, _mu_s_samples * _nu_samples, _mu_samples);
_inScatteringSupTermsProgramObject->activate();
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_inScatteringSupTermsProgramObject->setUniform(
"transmittanceTexture",
transmittanceTableTextureUnit
);
deltaJTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaJTableTexture);
_inScatteringSupTermsProgramObject->setUniform(
"deltaJTexture",
deltaJTableTextureUnit
);
loadAtmosphereDataIntoShaderProgram(*_inScatteringSupTermsProgramObject);
for (int layer = 0; layer < _r_samples; ++layer) {
step3DTexture(*_inScatteringSupTermsProgramObject, layer, true);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
fmt::format("deltaS_texture-scattering_order-{}.ppm", scatteringOrder),
glm::ivec2(_mu_s_samples * _nu_samples, _mu_samples)
);
}
_inScatteringSupTermsProgramObject->deactivate();
glEnable(GL_BLEND);
glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
glBlendFuncSeparate(GL_ONE, GL_ONE, GL_ONE, GL_ONE);
// line 10 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_irradianceTableTexture,
0
);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
_irradianceFinalProgramObject->activate();
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_irradianceFinalProgramObject->setUniform(
"deltaETexture",
deltaETableTextureUnit
);
loadAtmosphereDataIntoShaderProgram(*_irradianceFinalProgramObject);
renderQuadForCalc(quadCalcVAO, vertexSize);
if (_saveCalculationTextures) {
saveTextureFile(
GL_COLOR_ATTACHMENT0,
fmt::format("irradianceTable_order-{}.ppm", scatteringOrder),
_deltaETableSize
);
}
_irradianceFinalProgramObject->deactivate();
// line 11 in algorithm 4.1
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_inScatteringTableTexture,
0
);
glViewport(0, 0, _mu_s_samples * _nu_samples, _mu_samples);
_deltaSSupTermsProgramObject->activate();
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
_deltaSSupTermsProgramObject->setUniform(
"deltaSTexture",
deltaSRayleighTableTextureUnit
);
loadAtmosphereDataIntoShaderProgram(*_deltaSSupTermsProgramObject);
for (int layer = 0; layer < _r_samples; ++layer) {
step3DTexture(*_deltaSSupTermsProgramObject, layer, false);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
if (_saveCalculationTextures) {
saveTextureFile(GL_COLOR_ATTACHMENT0,
fmt::format("inscatteringTable_order-{}.ppm", scatteringOrder),
glm::ivec2(_mu_s_samples * _nu_samples, _mu_samples)
);
}
_deltaSSupTermsProgramObject->deactivate();
glDisable(GL_BLEND);
}
// Restores OpenGL blending state
global::renderEngine->openglStateCache().resetBlendState();
}
void AtmosphereDeferredcaster::preCalculateAtmosphereParam() {
// Load Shader Programs for Calculations
loadComputationPrograms();
// Create Textures for Calculations
createComputationTextures();
// Saves current FBO first
GLint defaultFBO;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO);
GLint viewport[4];
global::renderEngine->openglStateCache().viewport(viewport);
// Creates the FBO for the calculations
GLuint calcFBO;
glGenFramebuffers(1, &calcFBO);
glBindFramebuffer(GL_FRAMEBUFFER, calcFBO);
GLenum drawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, drawBuffers);
// Prepare for rendering/calculations
GLuint quadCalcVAO;
GLuint quadCalcVBO;
createRenderQuad(&quadCalcVAO, &quadCalcVBO, 1.0f);
// Starting Calculations...
LDEBUG("Starting precalculations for scattering effects");
// Execute Calculations
executeCalculations(quadCalcVAO, drawBuffers, 6);
deleteUnusedComputationTextures();
// Restores system state
glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO);
global::renderEngine->openglStateCache().setViewportState(viewport);
glDeleteBuffers(1, &quadCalcVBO);
glDeleteVertexArrays(1, &quadCalcVAO);
glDeleteFramebuffers(1, &calcFBO);
LDEBUG("Ended precalculations for Atmosphere effects");
}
void AtmosphereDeferredcaster::loadAtmosphereDataIntoShaderProgram(
ghoul::opengl::ProgramObject& shaderProg)
{
shaderProg.setUniform("Rg", _atmospherePlanetRadius);
shaderProg.setUniform("Rt", _atmosphereRadius);
shaderProg.setUniform("AverageGroundReflectance", _planetAverageGroundReflectance);
shaderProg.setUniform("groundRadianceEmission", _planetGroundRadianceEmission);
shaderProg.setUniform("HR", _rayleighHeightScale);
shaderProg.setUniform("betaRayleigh", _rayleighScatteringCoeff);
shaderProg.setUniform("HM", _mieHeightScale);
shaderProg.setUniform("betaMieScattering", _mieScatteringCoeff);
shaderProg.setUniform("betaMieExtinction", _mieExtinctionCoeff);
shaderProg.setUniform("mieG", _miePhaseConstant);
shaderProg.setUniform("sunRadiance", _sunRadianceIntensity);
shaderProg.setUniform("TRANSMITTANCE", _transmittanceTableSize);
shaderProg.setUniform("SKY", _irradianceTableSize);
shaderProg.setUniform("OTHER_TEXTURES", _deltaETableSize);
shaderProg.setUniform("SAMPLES_R", _r_samples);
shaderProg.setUniform("SAMPLES_MU", _mu_samples);
shaderProg.setUniform("SAMPLES_MU_S", _mu_s_samples);
shaderProg.setUniform("SAMPLES_NU", _nu_samples);
shaderProg.setUniform("ozoneLayerEnabled", _ozoneEnabled);
shaderProg.setUniform("HO", _ozoneHeightScale);
shaderProg.setUniform("betaOzoneExtinction", _ozoneExtinctionCoeff);
}
void AtmosphereDeferredcaster::step3DTexture(ghoul::opengl::ProgramObject& shaderProg,
int layer, bool doCalculation)
{
// See OpenGL redbook 8th Edition page 556 for Layered Rendering
if (doCalculation) {
const float earth2 = _atmospherePlanetRadius * _atmospherePlanetRadius;
const float diff = _atmosphereRadius * _atmosphereRadius - earth2;
const float ri = static_cast<float>(layer) / static_cast<float>(_r_samples - 1);
const float eps = [&]() {
if (layer == 0) {
return 0.01f;
}
else {
if (layer == (_r_samples - 1)) {
return -0.001f;
}
else {
return 0.f;
}
}
}();
const float r = std::sqrt(earth2 + ri * ri * diff) + eps;
const float dminG = r - _atmospherePlanetRadius;
const float dminT = _atmosphereRadius - r;
const float dh = std::sqrt(r * r - earth2);
const float dH = dh + std::sqrt(diff);
shaderProg.setUniform("r", r);
shaderProg.setUniform("dhdH", dminT, dH, dminG, dh);
}
shaderProg.setUniform("layer", layer);
}
} // namespace openspace