Files
OpenSpace/modules/atmosphere/rendering/renderableplanetatmosphere.cpp
2016-11-17 14:20:29 -05:00

2585 lines
126 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
// open space includes
#include <modules/atmosphere/rendering/renderableplanetatmosphere.h>
#include <openspace/engine/configurationmanager.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/rendering/renderengine.h>
#include <modules/base/rendering/planetgeometry.h>
#include <openspace/util/time.h>
#include <openspace/util/spicemanager.h>
#include <openspace/scene/scenegraphnode.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/misc/assert.h>
#include <ghoul/io/texture/texturereader.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/texture.h>
#include <ghoul/opengl/textureunit.h>
#include <glm/gtx/string_cast.hpp>
#include <memory>
#include <fstream>
#include <ostream>
#define _USE_MATH_DEFINES
#include <math.h>
//#define _ATMOSPHERE_DEBUG
#define _SAVE_ATMOSPHERE_TEXTURES
namespace {
const std::string _loggerCat = "RenderablePlanetAtmosphere";
const std::string keyFrame = "Frame";
const std::string keyGeometry = "Geometry";
const std::string keyRadius = "Radius";
const std::string keyShading = "PerformShading";
const std::string keyShadowGroup = "Shadow_Group";
const std::string keyShadowSource = "Source";
const std::string keyShadowCaster = "Caster";
const std::string keyAtmosphere = "Atmosphere";
const std::string keyAtmosphereRadius = "AtmoshereRadius";
const std::string keyPlanetRadius = "PlanetRadius";
const std::string keyAverageGroundReflectance = "PlanetAverageGroundReflectance";
const std::string keyRayleigh = "Rayleigh";
const std::string keyRayleighHeightScale = "H_R";
const std::string keyMie = "Mie";
const std::string keyMieHeightScale = "H_M";
const std::string keyMiePhaseConstant = "G";
const std::string keyBody = "Body";
}
namespace openspace {
RenderablePlanetAtmosphere::RenderablePlanetAtmosphere(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _colorTexturePath("colorTexture", "Color Texture")
, _nightTexturePath("nightTexture", "Night Texture")
, _heightMapTexturePath("heightMap", "Heightmap Texture")
, _cloudsTexturePath("clouds", "Clouds Texture")
, _reflectanceTexturePath("reflectance", "Reflectance Texture")
, _heightExaggeration("heightExaggeration", "Height Exaggeration", 1.f, 0.f, 10.f)
, _programObject(nullptr)
, _transmittanceProgramObject(nullptr)
, _irradianceProgramObject(nullptr)
, _irradianceSupTermsProgramObject(nullptr)
, _inScatteringProgramObject(nullptr)
, _inScatteringSupTermsProgramObject(nullptr)
, _deltaEProgramObject(nullptr)
, _deltaSProgramObject(nullptr)
, _deltaSSupTermsProgramObject(nullptr)
, _deltaJProgramObject(nullptr)
, _cleanTextureProgramObject(nullptr)
, _atmosphereProgramObject(nullptr)
, _texture(nullptr)
, _nightTexture(nullptr)
, _reflectanceTexture(nullptr)
, _heightMapTexture(nullptr)
, _cloudsTexture(nullptr)
, _geometry(nullptr)
, _performShading("performShading", "Perform Shading", true)
, _rotation("rotation", "Rotation", 0, 0, 360)
, _saveDeferredFramebuffer("save deferred framebuffer to disk", "Save deferred framebuffer to disk", false)
, _alpha(1.f)
, _planetRadius(0.f)
, _transmittanceTableTexture(0)
, _irradianceTableTexture(0)
, _inScatteringTableTexture(0)
, _deltaETableTexture(0)
, _deltaSRayleighTableTexture(0)
, _deltaSMieTableTexture(0)
, _deltaJTableTexture(0)
, _atmosphereTexture(0)
, _atmosphereDepthTexture(0)
, _atmosphereFBO(0)
, _atmosphereRenderVAO(0)
, _atmosphereRenderVBO(0)
, _atmosphereCalculated(false)
, _atmosphereEnabled(false)
, _atmosphereRadius(0.f)
, _atmospherePlanetRadius(0.f)
, _planetAverageGroundReflectance(0.f)
, _rayleighHeightScale(0.f)
, _mieHeightScale(0.f)
, _miePhaseConstant(0.f)
, _mieExtinctionCoeff(glm::vec3(0.f))
, _rayleighScatteringCoeff(glm::vec3(0.f))
, _mieScatteringCoeff(glm::vec3(0.f))
, _sunRadianceIntensity(50.0f)
, _hasNightTexture(false)
, _hasHeightTexture(false)
, _hasReflectanceTexture(false)
, _hasCloudsTexture(false)
, _shadowEnabled(false)
, _atmosphereHeightP("atmmosphereHeight", "Atmosphere Height (KM)", 60.0f, 0.1f, 100.0f)
, _groundAverageReflectanceP("averageGroundReflectance", "Average Ground Reflectance (%)", 0.1f, 0.0f, 1.0f)
, _rayleighHeightScaleP("rayleighHeightScale", "Rayleigh Height Scale (KM)", 8.0f, 0.1f, 20.0f)
, _mieHeightScaleP("mieHeightScale", "Mie Height Scale (KM)", 1.2f, 0.1f, 5.0f)
, _mieScatteringCoefficientP("mieScatteringCoefficient", "Mie Scattering Coefficient (x10e-3)", 4.0f, 1.0f, 20.0f)
, _mieScatteringExtinctionPropCoefficientP("mieScatteringExtinctionPropCoefficient",
"Mie Scattering/Extinction Proportion Coefficient (%)", 0.9f, 0.1f, 1.0f)
, _mieAsymmetricFactorGP("mieAsymmetricFactorG", "Mie Asymmetric Factor G", 1.0f, -1.0f, 1.0f)
, _sunIntensityP("sunIntensity", "Sun Intensity", 50.0f, 0.1f, 100.0f)
{
std::string name;
bool success = dictionary.getValue(SceneGraphNode::KeyName, name);
ghoul_assert(success,
"RenderablePlanetAtmosphere need the '" << SceneGraphNode::KeyName << "' be specified");
//=======================================================
//======== Reads Geometry Entries in mod file =============
//=======================================================
ghoul::Dictionary geometryDictionary;
success = dictionary.getValue(keyGeometry, geometryDictionary);
if (success) {
geometryDictionary.setValue(SceneGraphNode::KeyName, name);
//geometryDictionary.setValue(constants::scenegraph::keyPathModule, path);
_geometry = planetgeometry::PlanetGeometry::createFromDictionary(geometryDictionary);
glm::vec2 planetRadiusVec;
success = geometryDictionary.getValue(keyRadius, planetRadiusVec);
if (success)
_planetRadius = planetRadiusVec[0] * glm::pow(10, planetRadiusVec[1]);
else
LWARNING("No Radius value expecified for " << name << " planet.");
}
//===============================================================
//======== Reads Body and Frame Entries in mod file =============
//===============================================================
dictionary.getValue(keyFrame, _frame);
dictionary.getValue(keyBody, _target);
//============================================================
//======== Reads the Texture Entries in mod file =============
//============================================================
// TODO: textures need to be replaced by a good system similar to the geometry as soon
// as the requirements are fixed (ab)
std::string texturePath = "";
success = dictionary.getValue("Textures.Color", texturePath);
if (success)
_colorTexturePath = absPath(texturePath);
std::string nightTexturePath = "";
dictionary.getValue("Textures.Night", nightTexturePath);
if (nightTexturePath != "") {
_hasNightTexture = true;
_nightTexturePath = absPath(nightTexturePath);
}
std::string reflectanceTexturePath = "";
dictionary.getValue("Textures.Reflectance", reflectanceTexturePath);
if (reflectanceTexturePath != "") {
_hasReflectanceTexture = true;
_reflectanceTexturePath = absPath(reflectanceTexturePath);
}
std::string heightMapTexturePath = "";
dictionary.getValue("Textures.Height", heightMapTexturePath);
if (heightMapTexturePath != "") {
_hasHeightTexture = true;
_heightMapTexturePath = absPath(heightMapTexturePath);
}
std::string cloudsTexturePath = "";
dictionary.getValue("Textures.Clouds", cloudsTexturePath);
if (cloudsTexturePath != "") {
_hasCloudsTexture = true;
_cloudsTexturePath = absPath(cloudsTexturePath);
}
//=======================================================
//=========== Adding Textures as Properties =============
//=======================================================
addPropertySubOwner(_geometry);
addProperty(_colorTexturePath);
_colorTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this));
addProperty(_nightTexturePath);
_nightTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this));
addProperty(_heightMapTexturePath);
_heightMapTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this));
addProperty(_reflectanceTexturePath);
_reflectanceTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this));
addProperty(_cloudsTexturePath);
_cloudsTexturePath.onChange(std::bind(&RenderablePlanetAtmosphere::loadTexture, this));
addProperty(_heightExaggeration);
//=========================================================
//======== Shading and Rotation as Properties =============
//=========================================================
if (dictionary.hasKeyAndValue<bool>(keyShading)) {
bool shading;
dictionary.getValue(keyShading, shading);
_performShading = shading;
}
addProperty(_performShading);
// Mainly for debugging purposes @AA
addProperty(_rotation);
//================================================================
//======== Reads Shadow (Eclipses) Entries in mod file ===========
//================================================================
ghoul::Dictionary shadowDictionary;
success = dictionary.getValue(keyShadowGroup, shadowDictionary);
bool disableShadows = false;
if (success) {
std::vector< std::pair<std::string, float > > sourceArray;
unsigned int sourceCounter = 1;
while (success) {
std::string sourceName;
std::stringstream ss;
ss << keyShadowSource << sourceCounter << ".Name";
success = shadowDictionary.getValue(ss.str(), sourceName);
if (success) {
glm::vec2 sourceRadius;
ss.str(std::string());
ss << keyShadowSource << sourceCounter << ".Radius";
success = shadowDictionary.getValue(ss.str(), sourceRadius);
if (success) {
sourceArray.push_back(std::pair< std::string, float>(
sourceName, sourceRadius[0] * pow(10.f, sourceRadius[1])));
}
else {
LWARNING("No Radius value expecified for Shadow Source Name "
<< sourceName << " from " << name
<< " planet.\nDisabling shadows for this planet.");
disableShadows = true;
break;
}
}
sourceCounter++;
}
if (!disableShadows && !sourceArray.empty()) {
success = true;
std::vector< std::pair<std::string, float > > casterArray;
unsigned int casterCounter = 1;
while (success) {
std::string casterName;
std::stringstream ss;
ss << keyShadowCaster << casterCounter << ".Name";
success = shadowDictionary.getValue(ss.str(), casterName);
if (success) {
glm::vec2 casterRadius;
ss.str(std::string());
ss << keyShadowCaster << casterCounter << ".Radius";
success = shadowDictionary.getValue(ss.str(), casterRadius);
if (success) {
casterArray.push_back(std::pair< std::string, float>(
casterName, casterRadius[0] * pow(10.f, casterRadius[1])));
}
else {
LWARNING("No Radius value expecified for Shadow Caster Name "
<< casterName << " from " << name
<< " planet.\nDisabling shadows for this planet.");
disableShadows = true;
break;
}
}
casterCounter++;
}
if (!disableShadows && (!sourceArray.empty() && !casterArray.empty())) {
for (const auto & source : sourceArray)
for (const auto & caster : casterArray) {
ShadowConf sc;
sc.source = source;
sc.caster = caster;
_shadowConfArray.push_back(sc);
}
_shadowEnabled = true;
}
}
}
//================================================================
//=========== Reads Atmosphere Entries in mod file ===============
//================================================================
bool errorReadingAtmosphereData = false;
ghoul::Dictionary atmosphereDictionary;
success = dictionary.getValue(keyAtmosphere, atmosphereDictionary);
if (success) {
if (!atmosphereDictionary.getValue(keyAtmosphereRadius, _atmosphereRadius)) {
errorReadingAtmosphereData = true;
LWARNING("No Atmosphere Radius value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!atmosphereDictionary.getValue(keyPlanetRadius, _atmospherePlanetRadius)) {
errorReadingAtmosphereData = true;
LWARNING("No Planet Radius value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!atmosphereDictionary.getValue(keyAverageGroundReflectance, _planetAverageGroundReflectance)) {
errorReadingAtmosphereData = true;
LWARNING("No Average Atmosphere Ground Reflectance value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
ghoul::Dictionary rayleighDictionary;
success = atmosphereDictionary.getValue(keyRayleigh, rayleighDictionary);
if (success) {
// Not using right now.
glm::vec3 rayleighWavelengths;
success = rayleighDictionary.getValue("Coefficients.Wavelengths", rayleighWavelengths);
if (!rayleighDictionary.getValue("Coefficients.Scattering", _rayleighScatteringCoeff)) {
errorReadingAtmosphereData = true;
LWARNING("No Rayleigh Scattering parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!rayleighDictionary.getValue(keyRayleighHeightScale, _rayleighHeightScale)) {
errorReadingAtmosphereData = true;
LWARNING("No Rayleigh Height Scale value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
}
else {
errorReadingAtmosphereData = true;
LWARNING("No Rayleigh parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
ghoul::Dictionary mieDictionary;
success = atmosphereDictionary.getValue(keyMie, mieDictionary);
if (success) {
if (!mieDictionary.getValue(keyMieHeightScale, _mieHeightScale)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Height Scale value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!mieDictionary.getValue("Coefficients.Scattering", _mieScatteringCoeff)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Scattering parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!mieDictionary.getValue("Coefficients.Extinction", _mieExtinctionCoeff)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Extinction parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!mieDictionary.getValue(keyMiePhaseConstant, _miePhaseConstant)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Phase Constant value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
}
else {
errorReadingAtmosphereData = true;
LWARNING("No Mie parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!errorReadingAtmosphereData) {
_atmosphereEnabled = true;
//========================================================
//============== Atmosphere Properties ===================
//========================================================
_atmosphereHeightP.set(_atmosphereRadius - _atmospherePlanetRadius);
_atmosphereHeightP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_atmosphereHeightP);
_groundAverageReflectanceP.set(_planetAverageGroundReflectance);
_groundAverageReflectanceP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_groundAverageReflectanceP);
_rayleighHeightScaleP.set(_rayleighHeightScale);
_rayleighHeightScaleP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_rayleighHeightScaleP);
_mieHeightScaleP.set(_mieHeightScale);
_mieHeightScaleP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieHeightScaleP);
_mieScatteringCoefficientP.set(_mieScatteringCoeff.r * 1000.0f);
_mieScatteringCoefficientP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieScatteringCoefficientP);
_mieScatteringExtinctionPropCoefficientP.set(_mieScatteringCoeff.r / _mieExtinctionCoeff.r);
_mieScatteringExtinctionPropCoefficientP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieScatteringExtinctionPropCoefficientP);
_mieAsymmetricFactorGP.set(_miePhaseConstant);
_mieAsymmetricFactorGP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieAsymmetricFactorGP);
_sunIntensityP.set(_sunRadianceIntensity);
_sunIntensityP.onChange(std::bind(&RenderablePlanetAtmosphere::updateAtmosphereParameters, this));
addProperty(_sunIntensityP);
}
#ifdef _ATMOSPHERE_DEBUG
_saveDeferredFramebuffer = false;
addProperty(_saveDeferredFramebuffer);
#endif
}
}
RenderablePlanetAtmosphere::~RenderablePlanetAtmosphere() {
}
bool RenderablePlanetAtmosphere::initialize() {
RenderEngine& renderEngine = OsEng.renderEngine();
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Checking System State before initialization. OpenGL error: " << errString);
}
//===================================================================
//=========== Defines the shading program to be executed ============
//===================================================================
if (_programObject == nullptr && _atmosphereEnabled ) {
// atmosphere program
_programObject = renderEngine.buildRenderProgram(
"atmosphereAndShadowProgram",
"${MODULE_ATMOSPHERE}/shaders/atmosphere_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/atmosphere_fs.glsl");
if (!_programObject)
return false;
}
else if (_programObject == nullptr) {
// pscstandard
_programObject = renderEngine.buildRenderProgram(
"pscstandard",
"${MODULE_ATMOSPHERE}/shaders/pscstandard_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/pscstandard_fs.glsl");
if (!_programObject)
return false;
}
using IgnoreError = ghoul::opengl::ProgramObject::IgnoreError;
_programObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_programObject->setIgnoreUniformLocationError(IgnoreError::Yes);
#ifdef _ATMOSPHERE_DEBUG
// DEBUG: Deferred rendering of the Atmosphere
_deferredAtmosphereProgramObject = renderEngine.buildRenderProgram(
"atmosphereDeferredProgram",
"${MODULE_ATMOSPHERE}/shaders/atmosphere_deferred_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/atmosphere_deferred_fs.glsl");
_deferredAtmosphereProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deferredAtmosphereProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (!_deferredAtmosphereProgramObject)
return false;
#endif
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error after loading shading programs. OpenGL error: " << errString);
}
//===================================================================
//=========== Load textures defined in mod file to GPU ==============
//===================================================================
loadTexture();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error loading textures. OpenGL error: " << errString);
}
//========================================================================
//======== Initialize the current geometry (SimpleSphereGeometry) ========
//========================================================================
_geometry->initialize(this);
// Deactivate any previously activated shader program.
_programObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error before atmosphere computations. OpenGL error: " << errString);
}
//========================================================================
//============ Pre-compute all necessary Atmosphere Tables ==============
//========================================================================
if (_atmosphereEnabled && !_atmosphereCalculated) {
preCalculateAtmosphereParam();
#ifdef _ATMOSPHERE_DEBUG
// DEBUG: FBO for atmosphere deferred rendering.
createAtmosphereFBO();
createRenderQuad(&_atmosphereRenderVAO, &_atmosphereRenderVBO, 1.0f);
count = 0;
#endif
_atmosphereCalculated = true;
}
return isReady();
}
bool RenderablePlanetAtmosphere::deinitialize() {
if (_geometry) {
_geometry->deinitialize();
delete _geometry;
}
RenderEngine& renderEngine = OsEng.renderEngine();
if (_programObject) {
renderEngine.removeRenderProgram(_programObject);
_programObject = nullptr;
}
if (_transmittanceProgramObject) {
renderEngine.removeRenderProgram(_transmittanceProgramObject);
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
renderEngine.removeRenderProgram(_irradianceProgramObject);
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
renderEngine.removeRenderProgram(_irradianceSupTermsProgramObject);
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
renderEngine.removeRenderProgram(_inScatteringProgramObject);
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
renderEngine.removeRenderProgram(_inScatteringSupTermsProgramObject);
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
renderEngine.removeRenderProgram(_deltaEProgramObject);
_deltaEProgramObject = nullptr;
}
if (_deltaSProgramObject) {
renderEngine.removeRenderProgram(_deltaSProgramObject);
_deltaSProgramObject = nullptr;
}
if (_deltaSSupTermsProgramObject) {
renderEngine.removeRenderProgram(_deltaSSupTermsProgramObject);
_deltaSSupTermsProgramObject = nullptr;
}
if (_deltaJProgramObject) {
renderEngine.removeRenderProgram(_deltaJProgramObject);
_deltaJProgramObject = nullptr;
}
if (_cleanTextureProgramObject) {
renderEngine.removeRenderProgram(_cleanTextureProgramObject);
_cleanTextureProgramObject = nullptr;
}
_geometry = nullptr;
_texture = nullptr;
_nightTexture = nullptr;
_reflectanceTexture = nullptr;
_cloudsTexture = nullptr;
glDeleteTextures(1, &_transmittanceTableTexture);
glDeleteTextures(1, &_irradianceTableTexture);
glDeleteTextures(1, &_inScatteringTableTexture);
glDeleteTextures(1, &_deltaETableTexture);
glDeleteTextures(1, &_deltaSRayleighTableTexture);
glDeleteTextures(1, &_deltaSMieTableTexture);
glDeleteTextures(1, &_deltaJTableTexture);
glDeleteTextures(1, &_atmosphereTexture);
glDeleteFramebuffers(1, &_atmosphereFBO);
return true;
}
bool RenderablePlanetAtmosphere::isReady() const {
bool ready = true;
ready &= (_programObject != nullptr);
ready &= (_texture != nullptr);
ready &= (_geometry != nullptr);
return ready;
}
void RenderablePlanetAtmosphere::render(const RenderData& data) {
// activate shader
_programObject->activate();
// scale the planet to appropriate size since the planet is a unit sphere
glm::mat4 transform = glm::mat4(1);
//earth needs to be rotated for that to work.
glm::mat4 rot = glm::rotate(transform, static_cast<float>(M_PI_2), glm::vec3(1, 0, 0));
glm::mat4 roty = glm::rotate(transform, static_cast<float>(M_PI_2), glm::vec3(0, -1, 0));
glm::mat4 rotProp = glm::rotate(transform, glm::radians(static_cast<float>(_rotation)), glm::vec3(0, 1, 0));
// _stateMatrix is the Matrix transformation from _frame coordinate system (Earth in this case)
// to "GALATIC" coordinate system.
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
transform[i][j] = static_cast<float>(_stateMatrix[i][j]);
}
}
transform = transform * rot * roty * rotProp;
// setup the data to the shader
double lt;
glm::dvec3 sunPosFromPlanet =
SpiceManager::ref().targetPosition("SUN", _target, "GALACTIC", {}, _time, lt);
sunPosFromPlanet *= 1000.0; // from Km to m
psc sunPosFromPlanetPSC = PowerScaledCoordinate::CreatePowerScaledCoordinate(
sunPosFromPlanet.x, sunPosFromPlanet.y, sunPosFromPlanet.z);
glm::dvec3 planetPosFromSun =
SpiceManager::ref().targetPosition(_target, "SUN", "GALACTIC", {}, _time, lt);
psc planetPosFronSunPSC = PowerScaledCoordinate::CreatePowerScaledCoordinate(
planetPosFromSun.x, planetPosFromSun.y, planetPosFromSun.z);
// Camera direction (vector)
glm::vec3 cam_dir = glm::normalize(data.camera.position().vec3() - planetPosFronSunPSC.vec3());
_programObject->setUniform("transparency", _alpha);
_programObject->setUniform("ViewProjection", data.camera.viewProjectionMatrix());
_programObject->setUniform("ModelTransform", transform);
// Normal Transformation
glm::mat4 translateObjTransf = glm::translate(glm::mat4(1.0), data.position.vec3());
glm::mat4 translateCamTransf = glm::translate(glm::mat4(1.0), -data.camera.position().vec3());
// The following scale comes from PSC transformations.
float scaleFactor = data.camera.scaling().x * powf(10.0, data.camera.scaling().y);
glm::mat4 scaleCamTransf = glm::scale(glm::mat4(1.0), glm::vec3(scaleFactor));
glm::mat4 ModelViewTransf = data.camera.viewMatrix() * scaleCamTransf *
translateCamTransf * translateObjTransf * transform;
if (_atmosphereEnabled)
_programObject->setUniform("NormalTransform",
glm::transpose(glm::inverse(ModelViewTransf)));
//=== Sets campos, objpos, camrot and scaling in PSC coords for PSC calc in shader file ===
setPscUniforms(*_programObject.get(), data.camera, data.position);
_programObject->setUniform("_performShading", _performShading);
_programObject->setUniform("_hasHeightMap", _hasHeightTexture);
_programObject->setUniform("_heightExaggeration", _heightExaggeration);
// Bind texture
ghoul::opengl::TextureUnit dayUnit;
ghoul::opengl::TextureUnit nightUnit;
ghoul::opengl::TextureUnit heightUnit;
dayUnit.activate();
_texture->bind();
_programObject->setUniform("texture1", dayUnit);
// Bind possible night texture
if (_hasNightTexture) {
nightUnit.activate();
_nightTexture->bind();
_programObject->setUniform("nightTex", nightUnit);
}
if (_hasHeightTexture) {
heightUnit.activate();
_heightMapTexture->bind();
_programObject->setUniform("heightTex", heightUnit);
}
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
//=============================================================================
//============= Eclipse Shadow Calculations and Uniforms Loading ==============
//=============================================================================
// TODO: Move Calculations to VIEW SPACE (let's avoid precision problems...)
if (!_shadowConfArray.empty()) {
std::vector<ShadowRenderingStruct> shadowDataArray;
shadowDataArray.reserve(_shadowConfArray.size());
for (const auto & shadowConf : _shadowConfArray) {
// TO REMEMBER: all distances and lengths in world coordinates are in meters!!! We need to move this to view space...
// Getting source and caster:
glm::dvec3 sourcePos = SpiceManager::ref().targetPosition(shadowConf.source.first, "SUN", "GALACTIC", {}, _time, lt);
sourcePos *= 1000.0; // converting to meters
glm::dvec3 casterPos = SpiceManager::ref().targetPosition(shadowConf.caster.first, "SUN", "GALACTIC", {}, _time, lt);
casterPos *= 1000.0; // converting to meters
psc caster_pos = PowerScaledCoordinate::CreatePowerScaledCoordinate(casterPos.x, casterPos.y, casterPos.z);
// First we determine if the caster is shadowing the current planet (all calculations in World Coordinates):
glm::vec3 planetCasterVec = (caster_pos - data.position).vec3();
glm::vec3 sourceCasterVec = glm::vec3(casterPos - sourcePos);
float sc_length = glm::length(sourceCasterVec);
glm::vec3 planetCaster_proj = (glm::dot(planetCasterVec, sourceCasterVec) / (sc_length*sc_length)) * sourceCasterVec;
float d_test = glm::length(planetCasterVec - planetCaster_proj);
float xp_test = shadowConf.caster.second * sc_length / (shadowConf.source.second + shadowConf.caster.second);
float rp_test = shadowConf.caster.second * (glm::length(planetCaster_proj) + xp_test) / xp_test;
float casterDistSun = glm::length(casterPos);
float planetDistSun = glm::length(data.position.vec3());
ShadowRenderingStruct shadowData;
shadowData.isShadowing = false;
if (((d_test - rp_test) < _planetRadius) &&
(casterDistSun < planetDistSun)) {
// The current caster is shadowing the current planet
shadowData.isShadowing = true;
shadowData.rs = shadowConf.source.second;
shadowData.rc = shadowConf.caster.second;
shadowData.sourceCasterVec = sourceCasterVec;
shadowData.xp = xp_test;
shadowData.xu = shadowData.rc * sc_length / (shadowData.rs - shadowData.rc);
shadowData.casterPositionVec = glm::vec3(casterPos);
}
shadowDataArray.push_back(shadowData);
}
const std::string uniformVarName("shadowDataArray[");
unsigned int counter = 0;
for (const auto & sd : shadowDataArray) {
std::stringstream ss;
ss << uniformVarName << counter << "].isShadowing";
_programObject->setUniform(ss.str(), sd.isShadowing);
if (sd.isShadowing) {
ss.str(std::string());
ss << uniformVarName << counter << "].xp";
_programObject->setUniform(ss.str(), sd.xp);
ss.str(std::string());
ss << uniformVarName << counter << "].xu";
_programObject->setUniform(ss.str(), sd.xu);
/*ss.str(std::string());
ss << uniformVarName << counter << "].rs";
_programObject->setUniform(ss.str(), sd.rs);*/
ss.str(std::string());
ss << uniformVarName << counter << "].rc";
_programObject->setUniform(ss.str(), sd.rc);
ss.str(std::string());
ss << uniformVarName << counter << "].sourceCasterVec";
_programObject->setUniform(ss.str(), sd.sourceCasterVec);
ss.str(std::string());
ss << uniformVarName << counter << "].casterPositionVec";
_programObject->setUniform(ss.str(), sd.casterPositionVec);
}
counter++;
}
}
//=============================================================================
//================== Atmosphere Rendering and Uniforms Loading ================
//=============================================================================
if (_atmosphereEnabled) {
// Object Space (in Km)
glm::mat4 obj2World = glm::translate(glm::mat4(1.0), data.position.vec3() / 1000.0f);
glm::mat4 M = glm::mat4(data.camera.combinedViewMatrix()) * scaleCamTransf * obj2World * transform;
glm::mat4 completeInverse = glm::inverse(M);
_programObject->setUniform("completeInverse", completeInverse);
_programObject->setUniform("projInverse", glm::inverse(data.camera.projectionMatrix()));
// This is camera position and planet position vector in object coordinates, in Km.
glm::mat4 world2Obj = glm::inverse(obj2World * transform);
glm::vec4 cameraPosObj = world2Obj * glm::vec4(data.camera.position().vec3() / 1000.0f, 1.0);
glm::vec4 planetPositionObj = world2Obj * glm::vec4(data.position.vec3() / 1000.0f, 1.0);
_programObject->setUniform("cameraPosObj", cameraPosObj);
_programObject->setUniform("planetPositionObj", planetPositionObj);
// I know it is (0,0,0). It is here just for sake of sanity. :-p
glm::dvec3 sunPosWorld =
SpiceManager::ref().targetPosition("SUN", "SUN", "GALACTIC", {}, _time, lt);
glm::vec4 sunPosObj = world2Obj * glm::vec4(sunPosWorld.x, sunPosWorld.y, sunPosWorld.z, 1.0);
_programObject->setUniform("sunPositionObj", glm::vec3(sunPosObj));
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_programObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
irradianceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _irradianceTableTexture);
_programObject->setUniform("irradianceTexture", irradianceTableTextureUnit);
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
inScatteringTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _inScatteringTableTexture);
_programObject->setUniform("inscatterTexture", inScatteringTableTextureUnit);
GLint m_viewport[4];
glGetIntegerv(GL_VIEWPORT, m_viewport);
_programObject->setUniform("screenX", (float)m_viewport[0]);
_programObject->setUniform("screenY", (float)m_viewport[1]);
_programObject->setUniform("screenWIDTH", (float)m_viewport[2]);
_programObject->setUniform("screenHEIGHT", (float)m_viewport[3]);
_programObject->setUniform("Rg", _atmospherePlanetRadius);
_programObject->setUniform("Rt", _atmosphereRadius);
_programObject->setUniform("AverageGroundReflectance", _planetAverageGroundReflectance);
_programObject->setUniform("HR", _rayleighHeightScale);
_programObject->setUniform("betaRayleigh", _rayleighScatteringCoeff);
_programObject->setUniform("HM", _mieHeightScale);
_programObject->setUniform("betaMieScattering", _mieScatteringCoeff);
_programObject->setUniform("betaMieExtinction", _mieExtinctionCoeff);
_programObject->setUniform("mieG", _miePhaseConstant);
_programObject->setUniform("sunRadiance", _sunRadianceIntensity);
ghoul::opengl::TextureUnit reflectanceUnit;
if (_hasReflectanceTexture) {
reflectanceUnit.activate();
_reflectanceTexture->bind();
_programObject->setUniform("reflectanceTexture", reflectanceUnit);
}
ghoul::opengl::TextureUnit cloudsUnit;
if (_hasCloudsTexture) {
cloudsUnit.activate();
_cloudsTexture->bind();
_programObject->setUniform("cloudsTexture", cloudsUnit);
}
// HDR
_programObject->setUniform("exposure", 0.4f);
}
// render
_geometry->render();
// disable shader
_programObject->deactivate();
#ifdef _ATMOSPHERE_DEBUG
// DEBUG: Deferred Rendering of the atmosphere to a texture.
// Render Atmosphere to a texture:
if (_atmosphereEnabled) {
/*std::cout << "\nTestes..." << std::endl;
glm::dvec3 sunPosSun = SpiceManager::ref().targetPosition("SUN", "SUN", "GALACTIC", {}, _time, lt);
glm::dvec3 earthPosSun = SpiceManager::ref().targetPosition("EARTH", "SUN", "GALACTIC", {}, _time, lt);
std::cout << "\n\nSun in Sun: " << sunPosSun.x << ", " << sunPosSun.y << ", " << sunPosSun.z << std::endl;
std::cout << "\n\nEarth in Sun: " << earthPosSun.x << ", " << earthPosSun.y << ", " << earthPosSun.z << std::endl;
std::cout << "\n\nCam Position in Sun: " << data.camera.position().vec3().x << ", " << data.camera.position().vec3().y << ", " << data.camera.position().vec3().z << std::endl;
std::cout << "\n\nCam Position from Earth in Sun: " << cam_dir.x << ", " << cam_dir.y << ", " << cam_dir.z << std::endl;
glm::dmat3 sun2earthMat = SpiceManager::ref().frameTransformationMatrix("GALACTIC", "IAU_EARTH", _time);
glm::dvec3 sunPosEarth = sun2earthMat * sunPosSun;
glm::dvec3 earthPosEarth = sun2earthMat * earthPosSun;
glm::dvec3 camDirEarth = sun2earthMat * cam_dir;
glm::dvec3 camPosEarth = sun2earthMat * data.camera.position().vec3();
std::cout << "\n\nSun in Earth: " << sunPosEarth.x << ", " << sunPosEarth.y << ", " << sunPosEarth.z << std::endl;
std::cout << "\n\nEarth in Earth: " << earthPosEarth.x << ", " << earthPosEarth.y << ", " << earthPosEarth.z << std::endl;
std::cout << "\n\nCam Position in Earth: " << camPosEarth.x << ", " << camPosEarth.y << ", " << camPosEarth.z << std::endl;
std::cout << "\n\nCam Position from Earth in Earth: " << camDirEarth.x << ", " << camDirEarth.y << ", " << camDirEarth.z << std::endl;
glm::dvec3 sunPosView = glm::dvec3(data.camera.viewMatrix() * glm::dvec4(sunPosSun.x, sunPosSun.y, sunPosSun.z, 1.0));
glm::dvec3 earthPosView = glm::dvec3(data.camera.viewMatrix() * glm::dvec4(earthPosSun.x, earthPosSun.y, earthPosSun.z, 1.0));
glm::dvec3 camDirView = glm::dvec3(data.camera.viewMatrix() * glm::dvec4(cam_dir.x, cam_dir.y, cam_dir.z, 0.0));
glm::dvec3 camPosView = glm::dvec3(data.camera.viewMatrix() * glm::dvec4(data.camera.position().vec3().x, data.camera.position().vec3().y, data.camera.position().vec3().z, 1.0));
std::cout << "\n\nSun in View: " << sunPosView.x << ", " << sunPosView.y << ", " << sunPosView.z << std::endl;
std::cout << "\n\nEarth in View: " << earthPosView.x << ", " << earthPosView.y << ", " << earthPosView.z << std::endl;
std::cout << "\n\nCam Position in View: " << camPosView.x << ", " << camPosView.y << ", " << camPosView.z << std::endl;
std::cout << "\n\nCam Position from Earth in View: " << camDirView.x << ", " << camDirView.y << ", " << camDirView.z << std::endl;*/
GLint defaultFBO;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO);
GLint m_viewport[4];
glGetIntegerv(GL_VIEWPORT, m_viewport);
glBindFramebuffer(GL_FRAMEBUFFER, _atmosphereFBO);
GLenum drawBuffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, drawBuffers);
if (!glIsTexture(_dummyTexture)) {
_dummyTextureUnit.activate();
glGenTextures(1, &_dummyTexture);
//glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _dummyTexture);
glBindTexture(GL_TEXTURE_2D, _dummyTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_viewport[2],
m_viewport[3], 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr);
/*glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, 8, GL_RGBA,
m_viewport[2], m_viewport[3], true);*/
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, _dummyTexture, 0);
//checkFrameBufferState("dummy framebuffer - line 955");
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, _atmosphereTexture, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _atmosphereDepthTexture, 0);
checkFrameBufferState("deferred atmosphere framebuffer - line 958");
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errorString = gluErrorString(err);
std::stringstream ss;
ss << "Error after setting up atmosphere framebuffer. OpenGL error: "
<< err << " - " << errorString << std::endl;
LERROR(ss.str());
}
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
_deferredAtmosphereProgramObject->activate();
// check OpenGL error
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errorString = gluErrorString(err);
std::cout << "\n\nActivated Deferred Program. OpenGL error: "
<< err << " - " << errorString << std::endl;
}
// Object ModelTranform in double matrix
glm::dmat4 dTransform = glm::dmat4(transform);
std::cout << "\n dTransform: " << glm::to_string(dTransform) << std::endl;
// Object Space (in Km)
glm::dmat4 obj2WorldKM = glm::translate(glm::dmat4(1.0), data.position.dvec3() / 1000.0) * dTransform;
_deferredAtmosphereProgramObject->setUniform("object2WorldKMMatrix", obj2WorldKM);
std::cout << "\n object2WorldKMMatrix: " << glm::to_string(obj2WorldKM) << std::endl;
// Object Space (in Meters)
glm::dmat4 obj2World = glm::translate(glm::dmat4(1.0), data.position.dvec3()) * dTransform;
_deferredAtmosphereProgramObject->setUniform("object2WorldMatrix", obj2World);
std::cout << "\n object2WorldMatrix: " << glm::to_string(obj2World) << std::endl;
// Camera position in world space in KM:
glm::dmat4 cameraTransfWorldKM = glm::translate(glm::dmat4(1.0), -data.camera.positionVec3() / 1000.0);
std::cout << "\n cameraTransfWorldKM: " << glm::to_string(cameraTransfWorldKM) << std::endl;
// Camera position in world space in Meters:
glm::dmat4 cameraTransfWorld = glm::translate(glm::dmat4(1.0), -data.camera.positionVec3());
std::cout << "\n cameraTransfWorld: " << glm::to_string(cameraTransfWorld) << std::endl;
// The following scale comes from PSC transformations.
double dScaleFactor = data.camera.scaling().x * pow(10.0, data.camera.scaling().y);
std::cout << "\n Scaling Factor: " << dScaleFactor << std::endl;
glm::dmat4 dScaleCamTransfKM = glm::scale(glm::dmat4(1.0), glm::dvec3(dScaleFactor / 1000.0));
_deferredAtmosphereProgramObject->setUniform("scaleTransformKMMatrix", dScaleCamTransfKM);
std::cout << "\n dScaleCamTransfKM: " << glm::to_string(dScaleCamTransfKM) << std::endl;
glm::dmat4 dScaleCamTransf = glm::scale(glm::dmat4(1.0), glm::dvec3(dScaleFactor));
_deferredAtmosphereProgramObject->setUniform("scaleTransformMatrix", dScaleCamTransf);
std::cout << "\n dScaleCamTransf: " << glm::to_string(dScaleCamTransf) << std::endl;
// Calculate the MVP matrix in KM ---> This doesn't make sense because projection and view matrices are in meters... :-( (JCC)
glm::dmat4 mvpKM = glm::dmat4(data.camera.projectionMatrix())
* glm::dmat4(data.camera.viewMatrix()) * dScaleCamTransfKM * data.camera.viewRotationMatrix() * cameraTransfWorldKM * obj2WorldKM;
_deferredAtmosphereProgramObject->setUniform("completeTransfKMInverse", glm::inverse(mvpKM));
std::cout << "\n completeTransfKMInverse: " << glm::to_string(glm::inverse(mvpKM)) << std::endl;
// Calculate the MVP matrix in Meters
glm::dmat4 mvpMeters = glm::dmat4(data.camera.projectionMatrix())
* glm::dmat4(data.camera.viewMatrix()) * dScaleCamTransf * data.camera.viewRotationMatrix() * cameraTransfWorld * obj2World;
_deferredAtmosphereProgramObject->setUniform("completeTransfInverse", glm::inverse(mvpMeters));
std::cout << "\n completeTransfInverse: " << glm::to_string(glm::inverse(mvpMeters)) << std::endl;
_deferredAtmosphereProgramObject->setUniform("sgctProjectionMatrix", glm::dmat4(data.camera.projectionMatrix()));
std::cout << "\n sgctProjectionMatrix: " << glm::to_string(data.camera.projectionMatrix()) << std::endl;
_deferredAtmosphereProgramObject->setUniform("inverseSgctProjectionMatrix", glm::inverse(glm::dmat4(data.camera.projectionMatrix())));
std::cout << "\n inverseSgctProjectionMatrix: " << glm::to_string(glm::inverse(glm::dmat4(data.camera.projectionMatrix()))) << std::endl;
_deferredAtmosphereProgramObject->setUniform("sgctViewMatrix", glm::dmat4(data.camera.viewMatrix()));
std::cout << "\n sgctViewMatrix: " << glm::to_string(data.camera.viewMatrix()) << std::endl;
_deferredAtmosphereProgramObject->setUniform("inverseSgctViewMatrix", glm::inverse(glm::dmat4(data.camera.viewMatrix())));
std::cout << "\n inverseSgctViewMatrix: " << glm::to_string(glm::inverse(glm::dmat4(data.camera.viewMatrix()))) << std::endl;
_deferredAtmosphereProgramObject->setUniform("cameraRotationMatrix", data.camera.viewRotationMatrix());
std::cout << "\n cameraRotationMatrix: " << glm::to_string(data.camera.viewRotationMatrix()) << std::endl;
_deferredAtmosphereProgramObject->setUniform("inverseCameraRotationMatrix", glm::inverse(data.camera.viewRotationMatrix()));
std::cout << "\n inverseCameraRotationMatrix: " << glm::to_string(glm::inverse(data.camera.viewRotationMatrix())) << std::endl;
glm::dmat4 world2ObjKM = glm::inverse(obj2WorldKM);
_deferredAtmosphereProgramObject->setUniform("world2ObjectKMMatrix", world2ObjKM);
std::cout << "\n world2ObjectKMMatrix: " << glm::to_string(world2ObjKM) << std::endl;
glm::dmat4 world2Obj = glm::inverse(obj2World);
_deferredAtmosphereProgramObject->setUniform("world2ObjectMatrix", world2Obj);
std::cout << "\n world2ObjectMatrix: " << glm::to_string(world2Obj) << std::endl;
std::cout << "\n world2ObjectMatrix by parts: " << glm::to_string(glm::inverse(dTransform) * glm::translate(glm::dmat4(1.0), -data.position.dvec3())) << std::endl;
// Camera Position in Object Space in KM
glm::dvec4 cameraPosObjKM = world2Obj * glm::dvec4(-data.camera.positionVec3() / 1000.0, 1.0);
_deferredAtmosphereProgramObject->setUniform("cameraPositionKMObject", cameraPosObjKM);
std::cout << "\n cameraPositionKMObject: " << glm::to_string(cameraPosObjKM) << std::endl;
_deferredAtmosphereProgramObject->setUniform("cameraPositionKMWorld", glm::dvec4(data.camera.positionVec3() / 1000.0, 1.0));
std::cout << "\n cameraPositionKMWorld: " << glm::to_string(glm::dvec4(data.camera.positionVec3() / 1000.0, 1.0)) << std::endl;
// Camera Position in Object Space in Meters
glm::dvec4 cameraPosObj = world2Obj * glm::dvec4(-data.camera.positionVec3(), 1.0);
_deferredAtmosphereProgramObject->setUniform("cameraPositionObject", cameraPosObj);
std::cout << "\n cameraPositionObject: " << glm::to_string(cameraPosObj) << std::endl;
_deferredAtmosphereProgramObject->setUniform("cameraPositionWorld", glm::dvec4(data.camera.positionVec3(), 1.0));
std::cout << "\n cameraPositionWorld: " << glm::to_string(glm::dvec4(data.camera.positionVec3(), 1.0)) << std::endl;
// TESTING:
glm::dvec3 planetPosToSunKM = SpiceManager::ref().targetPosition("EARTH", "SUN", "GALACTIC", {}, _time, lt);
std::cout << "\n POSITION IN METERS (WORLD SPACE): " << glm::to_string(planetPosToSunKM * 1000.0) << std::endl;
// Planet Position on Object Space in KM
glm::dvec4 planetPositionObjKM = world2Obj * glm::dvec4(data.position.dvec3() / 1000.0, 1.0);
_deferredAtmosphereProgramObject->setUniform("planetPositionObjKM", planetPositionObjKM);
std::cout << "\n planetPositionObjKM: " << glm::to_string(planetPositionObjKM) << std::endl;
std::cout << "\n PLANET POS OBJ KM: " << glm::to_string(world2ObjKM * glm::dvec4(planetPosFromSun, 1.0)) << std::endl;
_deferredAtmosphereProgramObject->setUniform("planetPositionWorldKM", glm::dvec4(data.position.dvec3() / 1000.0, 1.0));
std::cout << "\n planetPositionWorldKM: " << glm::to_string(glm::dvec4(data.position.dvec3() / 1000.0, 1.0)) << std::endl;
std::cout << "\n PLANET POS WORLD KM: " << glm::to_string(planetPosFromSun) << std::endl;
// Planet Position on Object Space in Meters
glm::dvec4 planetPositionObj = world2Obj * glm::dvec4(data.position.vec3(), 1.0);
_deferredAtmosphereProgramObject->setUniform("planetPositionObj", planetPositionObj);
std::cout << "\n planetPositionObj: " << glm::to_string(planetPositionObj) << std::endl;
_deferredAtmosphereProgramObject->setUniform("planetPositionWorld", glm::dvec4(data.position.dvec3(), 1.0));
std::cout << "\n planetPositionWorld: " << glm::to_string(glm::dvec4(data.position.dvec3(), 1.0)) << std::endl;
// I know it is (0,0,0). It is here just for sake of sanity. :-p
glm::dvec3 sunPosWorld =
SpiceManager::ref().targetPosition("SUN", "SUN", "GALACTIC", {}, _time, lt);
glm::dvec4 sunPosObjKM = world2ObjKM * glm::vec4(sunPosWorld.x, sunPosWorld.y, sunPosWorld.z, 1.0);
_deferredAtmosphereProgramObject->setUniform("sunPositionObjKM", sunPosObjKM);
std::cout << "\n sunPositionObjKM: " << glm::to_string(sunPosObjKM) << std::endl;
glm::dvec4 sunPosObj = world2Obj * glm::dvec4(sunPosWorld.x * 1000.0, sunPosWorld.y * 1000.0, sunPosWorld.z * 1000.0, 1.0);
_deferredAtmosphereProgramObject->setUniform("sunPositionObj", sunPosObj);
std::cout << "\n sunPositionObj: " << glm::to_string(sunPosObj) << std::endl;
_transmittanceTableTextureUnit.activate();
//std::cout << "== Transmittance Texture Unit: " << _transmittanceTableTextureUnit << " ==" << std::endl;
_deferredAtmosphereProgramObject->setUniform("transmittanceTexture", _transmittanceTableTextureUnit);
_irradianceTableTextureUnit.activate();
//std::cout << "== Irradiance Texture Unit: " << _irradianceTableTextureUnit << " ==" << std::endl;
_deferredAtmosphereProgramObject->setUniform("irradianceTexture", _irradianceTableTextureUnit);
_inScatteringTableTextureUnit.activate();
//std::cout << "== InScattering Texture Unit: " << _inScatteringTableTextureUnit << " ==" << std::endl;
_deferredAtmosphereProgramObject->setUniform("inscatterTexture", _inScatteringTableTextureUnit);
_deferredAtmosphereProgramObject->setUniform("screenX", (float)m_viewport[0]);
_deferredAtmosphereProgramObject->setUniform("screenY", (float)m_viewport[1]);
_deferredAtmosphereProgramObject->setUniform("screenWIDTH", (float)m_viewport[2]);
_deferredAtmosphereProgramObject->setUniform("screenHEIGHT", (float)m_viewport[3]);
_deferredAtmosphereProgramObject->setUniform("Rg", _atmospherePlanetRadius);
_deferredAtmosphereProgramObject->setUniform("Rt", _atmosphereRadius);
_deferredAtmosphereProgramObject->setUniform("AverageGroundReflectance", _planetAverageGroundReflectance);
_deferredAtmosphereProgramObject->setUniform("HR", _rayleighHeightScale);
_deferredAtmosphereProgramObject->setUniform("betaRayleigh", _rayleighScatteringCoeff);
_deferredAtmosphereProgramObject->setUniform("HM", _mieHeightScale);
_deferredAtmosphereProgramObject->setUniform("betaMieScattering", _mieScatteringCoeff);
_deferredAtmosphereProgramObject->setUniform("betaMieExtinction", _mieExtinctionCoeff);
_deferredAtmosphereProgramObject->setUniform("mieG", _miePhaseConstant);
_deferredAtmosphereProgramObject->setUniform("sunRadiance", _sunRadianceIntensity);
ghoul::opengl::TextureUnit reflectanceUnit;
if (_hasReflectanceTexture) {
reflectanceUnit.activate();
//std::cout << "== Reflectance Texture Unit: " << reflectanceUnit << " ==" << std::endl;
_reflectanceTexture->bind();
_deferredAtmosphereProgramObject->setUniform("reflectanceTexture", reflectanceUnit);
}
ghoul::opengl::TextureUnit cloudsUnit;
if (_hasCloudsTexture) {
cloudsUnit.activate();
//std::cout << "== Clouds Texture Unit: " << cloudsUnit << " ==" << std::endl;
_cloudsTexture->bind();
_deferredAtmosphereProgramObject->setUniform("cloudsTexture", cloudsUnit);
}
// HDR
_deferredAtmosphereProgramObject->setUniform("exposure", 0.4f);
renderQuadForCalc(_atmosphereRenderVAO, 6);
if (_saveDeferredFramebuffer) {
std::stringstream ss;
ss << "atmosphere-" << count << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT1, ss.str(), m_viewport[2], m_viewport[3]);
ss.str("");
ss << "atmosphere-depth-" << count++ << ".ppm";
saveTextureToPPMFile(GL_DEPTH_ATTACHMENT, ss.str(), m_viewport[2], m_viewport[3]);
_saveDeferredFramebuffer = false;
}
// check OpenGL error
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errorString = gluErrorString(err);
std::cout << "\n\nRendering Deferred Program. OpenGL error: "
<< err << " - " << errorString << std::endl;
}
/*std::stringstream ss;
ss << "atmosphere-" << count++ << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT1, ss.str(), m_viewport[2], m_viewport[3]);*/
_deferredAtmosphereProgramObject->deactivate();
glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO);
glViewport(m_viewport[0], m_viewport[1],
m_viewport[2], m_viewport[3]);
}
#endif
}
void RenderablePlanetAtmosphere::update(const UpdateData& data) {
// set spice-orientation in accordance to timestamp
_stateMatrix = SpiceManager::ref().positionTransformMatrix(_frame, "GALACTIC", data.time);
_time = data.time;
}
void RenderablePlanetAtmosphere::loadTexture() {
_texture = nullptr;
if (_colorTexturePath.value() != "") {
_texture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_colorTexturePath)));
if (_texture) {
LDEBUG("Loaded texture from '" << _colorTexturePath << "'");
_texture->uploadTexture();
// Textures of planets looks much smoother with AnisotropicMipMap rather than linear
// TODO: AnisotropicMipMap crashes on ATI cards ---abock
//_texture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap);
_texture->setFilter(ghoul::opengl::Texture::FilterMode::Linear);
}
}
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error after loading color texture. OpenGL error: " << errString);
}
if (_hasNightTexture) {
_nightTexture = nullptr;
if (_nightTexturePath.value() != "") {
_nightTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_nightTexturePath)));
if (_nightTexture) {
LDEBUG("Loaded texture from '" << _nightTexturePath << "'");
_nightTexture->uploadTexture();
_nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear);
//_nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap);
}
}
}
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error after loading night texture. OpenGL error: " << errString);
}
if (_hasReflectanceTexture) {
_reflectanceTexture = nullptr;
if (_reflectanceTexturePath.value() != "") {
_reflectanceTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_reflectanceTexturePath)));
if (_reflectanceTexture) {
LDEBUG("Loaded texture from '" << _reflectanceTexturePath << "'");
_reflectanceTexture->uploadTexture();
_reflectanceTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear);
//_reflectanceTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap);
}
}
}
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error after loading reflectance texture. OpenGL error: " << errString);
}
if (_hasHeightTexture) {
_heightMapTexture = nullptr;
if (_heightMapTexturePath.value() != "") {
_heightMapTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_heightMapTexturePath)));
if (_heightMapTexture) {
LDEBUG("Loaded texture from '" << _heightMapTexturePath << "'");
_heightMapTexture->uploadTexture();
_heightMapTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear);
//_nightTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap);
}
}
}
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error after loading height texture. OpenGL error: " << errString);
}
if (_hasCloudsTexture) {
_cloudsTexture = nullptr;
if (_cloudsTexturePath.value() != "") {
_cloudsTexture = std::move(ghoul::io::TextureReader::ref().loadTexture(absPath(_cloudsTexturePath)));
if (_cloudsTexture) {
LDEBUG("Loaded texture from '" << _cloudsTexturePath << "'");
_cloudsTexture->uploadTexture();
_cloudsTexture->setFilter(ghoul::opengl::Texture::FilterMode::Linear);
//_cloudsTexture->setFilter(ghoul::opengl::Texture::FilterMode::AnisotropicMipMap);
}
}
}
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error after loading clouds texture. OpenGL error: " << errString);
}
}
void RenderablePlanetAtmosphere::loadComputationPrograms() {
RenderEngine& renderEngine = OsEng.renderEngine();
//============== Transmittance T =================
if (_transmittanceProgramObject == nullptr) {
_transmittanceProgramObject = ghoul::opengl::ProgramObject::Build(
"transmittanceCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/transmittance_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/transmittance_calc_fs.glsl");
if (!_transmittanceProgramObject) {
return;
}
}
using IgnoreError = ghoul::opengl::ProgramObject::IgnoreError;
_transmittanceProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_transmittanceProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Irradiance E =================
if (_irradianceProgramObject == nullptr) {
_irradianceProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/irradiance_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/irradiance_calc_fs.glsl");
if (!_irradianceProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
return;
}
}
_irradianceProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_irradianceProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (_irradianceSupTermsProgramObject == nullptr) {
_irradianceSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceSupTermsCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/irradiance_sup_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/irradiance_sup_calc_fs.glsl");
if (!_irradianceSupTermsProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
return;
}
}
_irradianceSupTermsProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_irradianceSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== InScattering S =================
if (_inScatteringProgramObject == nullptr) {
_inScatteringProgramObject = ghoul::opengl::ProgramObject::Build(
"inScatteringCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/inScattering_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_calc_gs.glsl");
if (!_inScatteringProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
return;
}
}
_inScatteringProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_inScatteringProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (_inScatteringSupTermsProgramObject == nullptr) {
_inScatteringSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"inScatteringSupTermsCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_gs.glsl");
if (!_inScatteringSupTermsProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
return;
}
}
_inScatteringSupTermsProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_inScatteringSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Delta E =================
if (_deltaEProgramObject == nullptr) {
_deltaEProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaECalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaE_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaE_calc_fs.glsl");
if (!_deltaEProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
return;
}
}
_deltaEProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaEProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Delta S =================
if (_deltaSProgramObject == nullptr) {
_deltaSProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaSCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaS_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_calc_gs.glsl");
if (!_deltaSProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
return;
}
}
_deltaSProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaSProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (_deltaSSupTermsProgramObject == nullptr) {
_deltaSSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaSSUPTermsCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_gs.glsl");
if (!_deltaSSupTermsProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject.reset();
_deltaSProgramObject = nullptr;
}
return;
}
}
_deltaSSupTermsProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaSSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Delta J (Radiance Scattered) =================
if (_deltaJProgramObject == nullptr) {
_deltaJProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaJCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_gs.glsl");
if (!_deltaJProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject.reset();
_deltaSProgramObject = nullptr;
}
if (_deltaSSupTermsProgramObject) {
_deltaSSupTermsProgramObject.reset();
_deltaSSupTermsProgramObject = nullptr;
}
return;
}
}
_deltaJProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaJProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Clean Texture Program =================
if (_cleanTextureProgramObject == nullptr) {
// shadow program
_cleanTextureProgramObject = ghoul::opengl::ProgramObject::Build(
"cleanTextureProgram",
"${MODULE_ATMOSPHERE}/shaders/texture_clean_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/texture_clean_fs.glsl");
if (!_cleanTextureProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject.reset();
_deltaSProgramObject = nullptr;
}
if (_deltaSSupTermsProgramObject) {
_deltaSSupTermsProgramObject.reset();
_deltaSSupTermsProgramObject = nullptr;
}
if (_deltaJProgramObject) {
_deltaJProgramObject.reset();
_deltaEProgramObject = nullptr;
}
return;
}
}
_cleanTextureProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_cleanTextureProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
}
void RenderablePlanetAtmosphere::unloadComputationPrograms() {
RenderEngine& renderEngine = OsEng.renderEngine();
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject.reset();
_deltaSProgramObject = nullptr;
}
if (_deltaSSupTermsProgramObject) {
_deltaSSupTermsProgramObject.reset();
_deltaSSupTermsProgramObject = nullptr;
}
if (_deltaJProgramObject) {
_deltaJProgramObject.reset();
_deltaJProgramObject = nullptr;
}
if (_cleanTextureProgramObject) {
_cleanTextureProgramObject.reset();
_cleanTextureProgramObject = nullptr;
}
}
void RenderablePlanetAtmosphere::createComputationTextures() {
//========== Create Atmosphere Tables (textures) ==============
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error before creating OpenGL textures for Atmosphere computation. OpenGL error: " << errString);
}
if (!_atmosphereCalculated) {
//============== Transmittance =================
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
transmittanceTableTextureUnit.activate();
glGenTextures(1, &_transmittanceTableTexture);
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Stopped using a buffer object for GL_PIXEL_UNPACK_BUFFER
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, TRANSMITTANCE_TABLE_WIDTH,
TRANSMITTANCE_TABLE_HEIGHT, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Transmittance T texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_2D, 0);
//============== Irradiance =================
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
irradianceTableTextureUnit.activate();
glGenTextures(1, &_irradianceTableTexture);
glBindTexture(GL_TEXTURE_2D, _irradianceTableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, IRRADIANCE_TABLE_WIDTH,
IRRADIANCE_TABLE_HEIGHT, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Irradiance E texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_2D, 0);
//============== InScattering =================
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
inScatteringTableTextureUnit.activate();
glGenTextures(1, &_inScatteringTableTexture);
glBindTexture(GL_TEXTURE_3D, _inScatteringTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA16F_ARB, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating InScattering S texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
}
//============== Delta E =================
ghoul::opengl::TextureUnit deltaETableTextureUnit;
deltaETableTextureUnit.activate();
glGenTextures(1, &_deltaETableTexture);
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, DELTA_E_TABLE_WIDTH,
DELTA_E_TABLE_HEIGHT, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Irradiance Delta E texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_2D, 0);
//============== Delta S =================
ghoul::opengl::TextureUnit deltaSRayleighTableTextureUnit;
deltaSRayleighTableTextureUnit.activate();
glGenTextures(1, &_deltaSRayleighTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB16F, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Rayleigh InScattering Delta S exture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
ghoul::opengl::TextureUnit deltaSMieTableTextureUnit;
deltaSMieTableTextureUnit.activate();
glGenTextures(1, &_deltaSMieTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB16F, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Mie InScattering Delta S texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
//============== Delta J (Radiance Scattered) =================
ghoul::opengl::TextureUnit deltaJTableTextureUnit;
deltaJTableTextureUnit.activate();
glGenTextures(1, &_deltaJTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaJTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB16F, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Inscattering Irradiance Delta J texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
}
void RenderablePlanetAtmosphere::deleteComputationTextures() {
// Cleaning up
glDeleteTextures(1, &_transmittanceTableTexture);
glDeleteTextures(1, &_irradianceTableTexture);
glDeleteTextures(1, &_inScatteringTableTexture);
glDeleteTextures(1, &_deltaETableTexture);
glDeleteTextures(1, &_deltaSRayleighTableTexture);
glDeleteTextures(1, &_deltaSMieTableTexture);
glDeleteTextures(1, &_deltaJTableTexture);
}
void RenderablePlanetAtmosphere::deleteUnusedComputationTextures() {
glDeleteTextures(1, &_deltaETableTexture);
glDeleteTextures(1, &_deltaSRayleighTableTexture);
glDeleteTextures(1, &_deltaSMieTableTexture);
glDeleteTextures(1, &_deltaJTableTexture);
}
void RenderablePlanetAtmosphere::updateAtmosphereParameters() {
_atmosphereRadius = _atmospherePlanetRadius + _atmosphereHeightP;
_planetAverageGroundReflectance = _groundAverageReflectanceP;
_rayleighHeightScale = _rayleighHeightScaleP;
_mieHeightScale = _mieHeightScaleP;
_mieScatteringCoeff = glm::vec3(_mieScatteringCoefficientP * 0.001f);
_mieExtinctionCoeff = _mieScatteringCoeff * (1.0f / static_cast<float>(_mieScatteringExtinctionPropCoefficientP));
_miePhaseConstant = _mieAsymmetricFactorGP;
_sunRadianceIntensity = _sunIntensityP;
preCalculateAtmosphereParam();
}
void RenderablePlanetAtmosphere::loadAtmosphereDataIntoShaderProgram(std::unique_ptr<ghoul::opengl::ProgramObject> & shaderProg) {
shaderProg->setUniform("Rg", _atmospherePlanetRadius);
shaderProg->setUniform("Rt", _atmosphereRadius);
shaderProg->setUniform("AverageGroundReflectance", _planetAverageGroundReflectance);
shaderProg->setUniform("HR", _rayleighHeightScale);
shaderProg->setUniform("betaRayleigh", _rayleighScatteringCoeff);
shaderProg->setUniform("HM", _mieHeightScale);
shaderProg->setUniform("betaMieScattering", _mieScatteringCoeff);
shaderProg->setUniform("betaMieExtinction", _mieExtinctionCoeff);
shaderProg->setUniform("mieG", _miePhaseConstant);
shaderProg->setUniform("sunRadiance", _sunRadianceIntensity);
}
void RenderablePlanetAtmosphere::executeCalculations(const GLuint quadCalcVAO, const GLenum drawBuffers[1], const GLsizei vertexSize) {
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
ghoul::opengl::TextureUnit deltaETableTextureUnit;
ghoul::opengl::TextureUnit deltaSRayleighTableTextureUnit;
ghoul::opengl::TextureUnit deltaSMieTableTextureUnit;
ghoul::opengl::TextureUnit deltaJTableTextureUnit;
// Saving current OpenGL state
bool blendEnabled = glIsEnabled(GL_BLEND);
GLint blendEquationRGB;
GLint blendEquationAlpha;
GLint blendDestAlpha;
GLint blendDestRGB;
GLint blendSrcAlpha;
GLint blendSrcRGB;
if (blendEnabled)
glDisable(GL_BLEND);
glGetIntegerv(GL_BLEND_EQUATION_RGB, &blendEquationRGB);
glGetIntegerv(GL_BLEND_EQUATION_ALPHA, &blendEquationAlpha);
glGetIntegerv(GL_BLEND_DST_ALPHA, &blendDestAlpha);
glGetIntegerv(GL_BLEND_DST_RGB, &blendDestRGB);
glGetIntegerv(GL_BLEND_SRC_ALPHA, &blendSrcAlpha);
glGetIntegerv(GL_BLEND_SRC_RGB, &blendSrcRGB);
// ===========================================================
// See Precomputed Atmosphere Scattering from Bruneton et al. paper, algorithm 4.1:
// ===========================================================
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _transmittanceTableTexture, 0);
checkFrameBufferState("_transmittanceTableTexture");
glViewport(0, 0, TRANSMITTANCE_TABLE_WIDTH, TRANSMITTANCE_TABLE_HEIGHT);
_transmittanceProgramObject->activate();
loadAtmosphereDataIntoShaderProgram(_transmittanceProgramObject);
//glClear(GL_COLOR_BUFFER_BIT);
static const float black[] = { 0.0f, 0.0f, 0.0f, 0.0f };
glClearBufferfv(GL_COLOR, 0, black);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("transmittance_texture.ppm"),
TRANSMITTANCE_TABLE_WIDTH, TRANSMITTANCE_TABLE_HEIGHT);
#endif
_transmittanceProgramObject->deactivate();
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Transmittance T Table. OpenGL error: " << errString);
}
// line 2 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaETableTexture, 0);
checkFrameBufferState("_deltaETableTexture");
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_irradianceProgramObject->activate();
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_irradianceProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_irradianceProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("deltaE_table_texture.ppm"),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_irradianceProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Irradiance Delta E Table. OpenGL error: " << errString);
}
// line 3 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaSRayleighTableTexture, 0);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, _deltaSMieTableTexture, 0);
GLenum colorBuffers[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, colorBuffers);
checkFrameBufferState("_deltaSRay and _deltaSMie TableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_inScatteringProgramObject->activate();
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_inScatteringProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_inScatteringProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_inScatteringProgramObject, layer);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("deltaS_rayleigh_texture.ppm"),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
saveTextureToPPMFile(GL_COLOR_ATTACHMENT1, std::string("deltaS_mie_texture.ppm"),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, 0, 0);
glDrawBuffers(1, drawBuffers);
_inScatteringProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing InScattering Rayleigh and Mie Delta Tables. OpenGL error: " << errString);
}
// line 4 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _irradianceTableTexture, 0);
checkFrameBufferState("_irradianceTableTexture");
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_deltaEProgramObject->activate();
_deltaEProgramObject->setUniform("line", 4);
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_deltaEProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaEProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("irradiance_texture.ppm"),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_deltaEProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Irradiance E Table. OpenGL error: " << errString);
}
// line 5 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _inScatteringTableTexture, 0);
checkFrameBufferState("_inScatteringTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_deltaSProgramObject->activate();
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_deltaSProgramObject->setUniform("deltaSRTexture", deltaSRayleighTableTextureUnit);
_deltaSProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaSProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_deltaSProgramObject, layer, false);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("S_texture.ppm"),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_deltaSProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing InScattering S Table. OpenGL error: " << errString);
}
// loop in line 6 in algorithm 4.1
for (int scatteringOrder = 2; scatteringOrder <= 4; ++scatteringOrder) {
// line 7 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaJTableTexture, 0);
checkFrameBufferState("_deltaJTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_deltaJProgramObject->activate();
if (scatteringOrder == 2)
_deltaJProgramObject->setUniform("first", 1.0f);
else
_deltaJProgramObject->setUniform("first", 0.0f);
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_deltaJProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
_deltaJProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
_deltaJProgramObject->setUniform("deltaSRTexture", deltaSRayleighTableTextureUnit);
_deltaJProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaJProgramObject);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_deltaJProgramObject, layer);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
std::stringstream sst;
sst << "deltaJ_texture-scattering_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_deltaJProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Delta J Table (Sup. Terms). OpenGL error: " << errString);
}
// line 8 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaETableTexture, 0);
checkFrameBufferState("_deltaETableTexture");
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_irradianceSupTermsProgramObject->activate();
if (scatteringOrder == 2)
_irradianceSupTermsProgramObject->setUniform("first", 1.0f);
else
_irradianceSupTermsProgramObject->setUniform("first", 0.0f);
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_irradianceSupTermsProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
_irradianceSupTermsProgramObject->setUniform("deltaSRTexture", deltaSRayleighTableTextureUnit);
_irradianceSupTermsProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_irradianceSupTermsProgramObject);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "deltaE_texture-scattering_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_irradianceSupTermsProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Delta E Table (Sup. Terms). OpenGL error: " << errString);
}
// line 9 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaSRayleighTableTexture, 0);
checkFrameBufferState("_deltaSRayleighTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_inScatteringSupTermsProgramObject->activate();
if (scatteringOrder == 2)
_inScatteringSupTermsProgramObject->setUniform("first", 1.0f);
else
_inScatteringSupTermsProgramObject->setUniform("first", 0.0f);
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
deltaJTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaJTableTexture);
_inScatteringSupTermsProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
_inScatteringSupTermsProgramObject->setUniform("deltaJTexture", deltaJTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_inScatteringSupTermsProgramObject);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_inScatteringSupTermsProgramObject, layer);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "deltaS_texture-scattering_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_inScatteringSupTermsProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Delta S Table (Sup. Terms). OpenGL error: " << errString);
}
glEnable(GL_BLEND);
glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
glBlendFuncSeparate(GL_ONE, GL_ONE, GL_ONE, GL_ONE);
// line 10 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _irradianceTableTexture, 0);
checkFrameBufferState("_irradianceTableTexture");
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_deltaEProgramObject->activate();
_deltaEProgramObject->setUniform("line", 10);
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_deltaEProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaEProgramObject);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "irradianceTable_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_deltaEProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing E Table (Sup. Terms). OpenGL error: " << errString);
}
// line 11 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _inScatteringTableTexture, 0);
checkFrameBufferState("_inScatteringTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_deltaSSupTermsProgramObject->activate();
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
_deltaSSupTermsProgramObject->setUniform("deltaSTexture", deltaSRayleighTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaSSupTermsProgramObject);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_deltaSSupTermsProgramObject, layer, false);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "inscatteringTable_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_deltaSSupTermsProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing S Table (Sup. Terms). OpenGL error: " << errString);
}
glDisable(GL_BLEND);
}
// Restores OpenGL blending state
if (blendEnabled)
glEnable(GL_BLEND);
glBlendEquationSeparate(blendEquationRGB, blendEquationAlpha);
glBlendFuncSeparate(blendSrcRGB, blendDestRGB, blendSrcAlpha, blendDestAlpha);
}
void RenderablePlanetAtmosphere::preCalculateAtmosphereParam() {
std::stringstream ss;
ss << "\n\n==== Atmosphere Values Used in Pre-Computation ====\n"
<< "Atmosphere Radius: " << _atmosphereRadius << std::endl
<< "Planet Radius: " << _atmospherePlanetRadius << std::endl
<< "Average Reflection: " << _planetAverageGroundReflectance << std::endl
<< "Rayleigh HR: " << _rayleighHeightScale << std::endl
<< "Mie HR: " << _mieHeightScale << std::endl
<< "Mie G phase constant: " << _miePhaseConstant << std::endl
<< "Mie Extinction coeff: " << _mieExtinctionCoeff << std::endl
<< "Rayleigh Scattering coeff: " << _rayleighScatteringCoeff << std::endl
<< "Mie Scattering coeff: " << _mieScatteringCoeff << std::endl
<< "Textures:" << std::endl
<< "NightTexture: " << _hasNightTexture << std::endl
<< "ReflectanceTexture: " << _hasReflectanceTexture << std::endl
<< "HeightTexture: " << _hasHeightTexture << std::endl
<< "CloudsTextures: " << _hasCloudsTexture << std::endl;
std::cout << ss.str() << std::endl;
//==========================================================
//========= Load Shader Programs for Calculations ==========
//==========================================================
loadComputationPrograms();
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error loading shader programs for Atmosphere computation. OpenGL error: " << errString);
}
//==========================================================
//============ Create Textures for Calculations ============
//==========================================================
createComputationTextures();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating textures for Atmosphere computation. OpenGL error: " << errString);
}
// Saves current FBO first
GLint defaultFBO;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO);
GLint m_viewport[4];
glGetIntegerv(GL_VIEWPORT, m_viewport);
// Creates the FBO for the calculations
GLuint calcFBO;
glGenFramebuffers(1, &calcFBO);
glBindFramebuffer(GL_FRAMEBUFFER, calcFBO);
GLenum drawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, drawBuffers);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating FrameBuffer Object for Atmosphere pre-computation. OpenGL error: " << errString);
}
// Prepare for rendering/calculations
GLuint quadCalcVAO;
GLuint quadCalcVBO;
createRenderQuad(&quadCalcVAO, &quadCalcVBO, 1.0f);
/*if (_atmosphereCalculated) {
LDEBUG("Cleanning Atmosphere Textures...");
resetAtmosphereTextures(calcVAO, drawBuffers, 6);
}*/
// Starting Calculations...
LDEBUG("Starting precalculations for scattering effects...");
//==========================================================
//=================== Execute Calculations =================
//==========================================================
executeCalculations(quadCalcVAO, drawBuffers, 6);
deleteUnusedComputationTextures();
// Restores system state
glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO);
glViewport(m_viewport[0], m_viewport[1],
m_viewport[2], m_viewport[3]);
glDeleteBuffers(1, &quadCalcVBO);
glDeleteVertexArrays(1, &quadCalcVAO);
glDeleteFramebuffers(1, &calcFBO);
LDEBUG("Ended precalculations for Atmosphere effects...");
}
void RenderablePlanetAtmosphere::resetAtmosphereTextures(const GLuint vao, const GLenum drawBuffers[1], const GLsizei vertexSize) {
RenderEngine& renderEngine = OsEng.renderEngine();
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _transmittanceTableTexture, 0);
checkFrameBufferState("_transmittanceTableTexture");
glViewport(0, 0, TRANSMITTANCE_TABLE_WIDTH, TRANSMITTANCE_TABLE_HEIGHT);
_cleanTextureProgramObject->activate();
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(vao, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("transmittance_texture_clean.ppm"),
TRANSMITTANCE_TABLE_WIDTH, TRANSMITTANCE_TABLE_HEIGHT);
#endif
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Transmittance T Table. OpenGL error: " << errString);
}
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _irradianceTableTexture, 0);
checkFrameBufferState("_irradianceTableTexture");
//glDrawBuffers(1, drawBuffers);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_cleanTextureProgramObject->activate();
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(vao, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("irradiance_texture_clean.ppm"),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Irradiance E Table. OpenGL error: " << errString);
}
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _inScatteringTableTexture, 0);
checkFrameBufferState("_inScatteringTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_cleanTextureProgramObject->activate();
//_deltaSProgramObject->setUniform("deltaSRTexture", _deltaSRayleighTableTextureUnit);
//_deltaSProgramObject->setUniform("deltaSMTexture", _deltaSMieTableTextureUnit);
//loadAtmosphereDataIntoShaderProgram(_deltaSProgramObject);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_deltaSProgramObject, layer, false);
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(vao, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("S_texture_clean.ppm"),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing InScattering S Table. OpenGL error: " << errString);
}
}
void RenderablePlanetAtmosphere::createAtmosphereFBO() {
GLint m_viewport[4];
glGetIntegerv(GL_VIEWPORT, m_viewport);
/*GLint defaultFBO;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO); */
ghoul::opengl::TextureUnit atmosphereTextureUnit;
atmosphereTextureUnit.activate();
glGenTextures(1, &_atmosphereTexture);
glBindTexture(GL_TEXTURE_2D, _atmosphereTexture);
//glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _atmosphereTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_viewport[2],
m_viewport[3], 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr);
/*glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, 8, GL_RGBA,
m_viewport[2], m_viewport[3], true);*/
ghoul::opengl::TextureUnit atmosphereDepthTexUnit;
atmosphereDepthTexUnit.activate();
glGenTextures(1, &_atmosphereDepthTexture);
glBindTexture(GL_TEXTURE_2D, _atmosphereDepthTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, m_viewport[2],
m_viewport[3], 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
std::stringstream ss;
ss << "Error creating atmosphere framebuffer. OpenGL error: " << err << std::endl;
LERROR(ss.str());
}
glGenFramebuffers(1, &_atmosphereFBO);
checkFrameBufferState("creating atmosphere FBO line 2146");
}
void RenderablePlanetAtmosphere::createRenderQuad(GLuint * vao, GLuint * vbo, const GLfloat size) {
glGenVertexArrays(1, vao);
glGenBuffers(1, vbo);
glBindVertexArray(*vao);
glBindBuffer(GL_ARRAY_BUFFER, *vbo);
const GLfloat vertex_data[] = {
// x y z w
-size, -size, 0.0f, 1.0f,
size, size, 0.0f, 1.0f,
-size, size, 0.0f, 1.0f,
-size, -size, 0.0f, 1.0f,
size, -size, 0.0f, 1.0f,
size, size, 0.0f, 1.0f
};
glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_data), vertex_data, GL_STATIC_DRAW);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 4, reinterpret_cast<GLvoid*>(0));
glEnableVertexAttribArray(0);
glBindVertexArray(0);
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
LERROR("Error creating vertexbuffer for computation. OpenGL error: " << err);
}
}
void RenderablePlanetAtmosphere::renderQuadForCalc(const GLuint vao, const GLsizei numberOfVertices)
{
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, numberOfVertices);
glBindVertexArray(0);
}
void RenderablePlanetAtmosphere::step3DTexture(std::unique_ptr<ghoul::opengl::ProgramObject> & shaderProg,
const int layer, const bool doCalc)
{
// See OpenGL redbook 8th Edition page 556 for Layered Rendering
if (doCalc)
{
float earth2 = _atmospherePlanetRadius * _atmospherePlanetRadius;
float atm2 = _atmosphereRadius * _atmosphereRadius;
float diff = atm2 - earth2;
float r = static_cast<double>(layer) / static_cast<double>(R_SAMPLES - 1);
float r2 = r * r;
float c = 0.0;
if (layer == 0)
c = 0.01f;
else if (layer == (R_SAMPLES - 1))
c = -0.001f;
else
c = 0.0;
r = sqrtf(earth2 + r2 * diff) + c;
float dmin = _atmosphereRadius - r;
float dmax = sqrtf(r * r - earth2) + sqrtf(diff);
float dminp = r - _atmospherePlanetRadius;
float dmaxp = sqrtf(r * r - earth2);
shaderProg->setUniform("r", r);
shaderProg->setUniform("dhdH", dmin, dmax, dminp, dmaxp);
}
shaderProg->setUniform("layer", static_cast<int>(layer));
}
void RenderablePlanetAtmosphere::saveTextureToPPMFile(const GLenum color_buffer_attachment, const std::string & fileName,
const int width, const int height) const {
std::fstream ppmFile;
ppmFile.open(fileName.c_str(), std::fstream::out);
if (ppmFile.is_open()) {
unsigned char * pixels = new unsigned char[width*height * 3];
for (int t = 0; t < width*height * 3; ++t)
pixels[t] = 255;
// check OpenGL error
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errorString = gluErrorString(err);
std::cout << "\n\nBefore Reading Texture from card. OpenGL error: "
<< err << " - " << errorString << std::endl;
}
if (color_buffer_attachment != GL_DEPTH_ATTACHMENT) {
glReadBuffer(color_buffer_attachment);
glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels);
}
else {
glReadPixels(0, 0, width, height, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, pixels);
}
ppmFile << "P3" << std::endl;
ppmFile << width << " " << height << std::endl;
ppmFile << "255" << std::endl;
std::cout << "\n\nFILE\n\n";
int k = 0;
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
ppmFile << (unsigned int)pixels[k] << " " << (unsigned int)pixels[k + 1] << " " << (unsigned int)pixels[k + 2] << " ";
k += 3;
}
ppmFile << std::endl;
}
delete[] pixels;
ppmFile.close();
}
}
void RenderablePlanetAtmosphere::checkFrameBufferState(const std::string & codePosition) const {
if (glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
LERROR("Framework not built. " + codePosition);
GLenum fbErr = glCheckFramebufferStatus(GL_FRAMEBUFFER);
switch (fbErr) {
case GL_FRAMEBUFFER_UNDEFINED:
LERROR("Indefined framebuffer.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
LERROR("Incomplete, missing attachement.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
LERROR("Framebuffer doesn't have at least one image attached to it.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER:
LERROR("Returned if the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE \
for any color attachment point(s) named by GL_DRAW_BUFFERi.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER:
LERROR("Returned if GL_READ_BUFFER is not GL_NONE and the value of \
GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE for the color attachment point \
named by GL_READ_BUFFER.");
break;
case GL_FRAMEBUFFER_UNSUPPORTED:
LERROR("Returned if the combination of internal formats of the attached images \
violates an implementation - dependent set of restrictions.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE:
LERROR("Returned if the value of GL_RENDERBUFFER_SAMPLES is not the same for all \
attached renderbuffers; if the value of GL_TEXTURE_SAMPLES is the not same for all \
attached textures; or , if the attached images are a mix of renderbuffers and textures, \
the value of GL_RENDERBUFFER_SAMPLES does not match the value of GL_TEXTURE_SAMPLES.");
LERROR("Returned if the value of GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not the same \
for all attached textures; or , if the attached images are a mix of renderbuffers and \
textures, the value of GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not GL_TRUE for all attached textures.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS:
LERROR("Returned if any framebuffer attachment is layered, and any populated attachment \
is not layered, or if all populated color attachments are not from textures of the same target.");
break;
default:
LDEBUG("No error found checking framebuffer: " + codePosition);
break;
}
}
}
} // namespace openspace