Files
OpenSpace/modules/globebrowsing/globes/chunkedlodglobe.cpp
Kalle Bladin 7aceb54bec Globe browsing: fix implicit conversion errors and remove warnings (#393)
* Fix implicit conversion errors and remove warnings.
2017-09-01 12:03:31 -04:00

364 lines
15 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2017 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/globebrowsing/globes/chunkedlodglobe.h>
#include <modules/globebrowsing/chunk/chunk.h>
#include <modules/globebrowsing/chunk/chunklevelevaluator/chunklevelevaluator.h>
#include <modules/globebrowsing/chunk/chunklevelevaluator/availabletiledataevaluator.h>
#include <modules/globebrowsing/chunk/chunklevelevaluator/distanceevaluator.h>
#include <modules/globebrowsing/chunk/chunklevelevaluator/projectedareaevaluator.h>
#include <modules/globebrowsing/chunk/chunknode.h>
#include <modules/globebrowsing/chunk/culling/chunkculler.h>
#include <modules/globebrowsing/chunk/culling/frustumculler.h>
#include <modules/globebrowsing/chunk/culling/horizonculler.h>
#include <modules/globebrowsing/globes/renderableglobe.h>
#include <modules/globebrowsing/meshes/skirtedgrid.h>
#include <modules/globebrowsing/tile/tileprovider/tileprovider.h>
#include <modules/globebrowsing/rendering/chunkrenderer.h>
#include <modules/globebrowsing/rendering/layer/layergroup.h>
#include <modules/globebrowsing/rendering/layer/layermanager.h>
#include <modules/debugging/rendering/debugrenderer.h>
#include <modules/globebrowsing/tile/tileindex.h>
#include <openspace/util/time.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/opengl/texture.h>
#include <math.h>
namespace openspace::globebrowsing {
const TileIndex ChunkedLodGlobe::LEFT_HEMISPHERE_INDEX = TileIndex(0, 0, 1);
const TileIndex ChunkedLodGlobe::RIGHT_HEMISPHERE_INDEX = TileIndex(1, 0, 1);
const GeodeticPatch ChunkedLodGlobe::COVERAGE = GeodeticPatch(0, 0, 90, 180);
ChunkedLodGlobe::ChunkedLodGlobe(const RenderableGlobe& owner, size_t segmentsPerPatch,
std::shared_ptr<LayerManager> layerManager)
: Renderable({ { "Name", owner.name() } })
, minSplitDepth(2)
, maxSplitDepth(22)
, stats(StatsCollector(absPath("test_stats"), 1, StatsCollector::Enabled::No))
, _owner(owner)
, _leftRoot(std::make_unique<ChunkNode>(Chunk(owner, LEFT_HEMISPHERE_INDEX)))
, _rightRoot(std::make_unique<ChunkNode>(Chunk(owner, RIGHT_HEMISPHERE_INDEX)))
, _layerManager(layerManager)
, _shadersNeedRecompilation(true)
{
auto geometry = std::make_shared<SkirtedGrid>(
static_cast<unsigned int>(segmentsPerPatch),
static_cast<unsigned int>(segmentsPerPatch),
TriangleSoup::Positions::No,
TriangleSoup::TextureCoordinates::Yes,
TriangleSoup::Normals::No
);
_chunkCullers.push_back(std::make_unique<culling::HorizonCuller>());
_chunkCullers.push_back(std::make_unique<culling::FrustumCuller>(
AABB3(glm::vec3(-1, -1, 0), glm::vec3(1, 1, 1e35)))
);
_chunkEvaluatorByAvailableTiles =
std::make_unique<chunklevelevaluator::AvailableTileData>();
_chunkEvaluatorByProjectedArea =
std::make_unique<chunklevelevaluator::ProjectedArea>();
_chunkEvaluatorByDistance =
std::make_unique<chunklevelevaluator::Distance>();
_renderer = std::make_unique<ChunkRenderer>(geometry, layerManager);
}
// The destructor is defined here to make it feasiable to use a unique_ptr
// with a forward declaration
ChunkedLodGlobe::~ChunkedLodGlobe() {}
bool ChunkedLodGlobe::isReady() const {
return true;
}
std::shared_ptr<LayerManager> ChunkedLodGlobe::layerManager() const {
return _layerManager;
}
bool ChunkedLodGlobe::testIfCullable(const Chunk& chunk,
const RenderData& renderData) const
{
if (_owner.debugProperties().performHorizonCulling &&
_chunkCullers[0]->isCullable(chunk, renderData)) {
return true;
}
if (_owner.debugProperties().performFrustumCulling &&
_chunkCullers[1]->isCullable(chunk, renderData)) {
return true;
}
return false;
}
const ChunkNode& ChunkedLodGlobe::findChunkNode(const Geodetic2& p) const {
ghoul_assert(COVERAGE.contains(p),
"Point must be in lat [-90, 90] and lon [-180, 180]");
return p.lon < COVERAGE.center().lon ? _leftRoot->find(p) : _rightRoot->find(p);
}
int ChunkedLodGlobe::getDesiredLevel(
const Chunk& chunk, const RenderData& renderData) const {
int desiredLevel = 0;
if (_owner.debugProperties().levelByProjectedAreaElseDistance) {
desiredLevel = _chunkEvaluatorByProjectedArea->getDesiredLevel(chunk, renderData);
}
else {
desiredLevel = _chunkEvaluatorByDistance->getDesiredLevel(chunk, renderData);
}
int desiredLevelByAvailableData = _chunkEvaluatorByAvailableTiles->getDesiredLevel(
chunk, renderData
);
if (desiredLevelByAvailableData != chunklevelevaluator::Evaluator::UnknownDesiredLevel &&
_owner.debugProperties().limitLevelByAvailableData) {
desiredLevel = glm::min(desiredLevel, desiredLevelByAvailableData);
}
desiredLevel = glm::clamp(desiredLevel, minSplitDepth, maxSplitDepth);
return desiredLevel;
}
float ChunkedLodGlobe::getHeight(glm::dvec3 position) const {
float height = 0;
// Get the uv coordinates to sample from
Geodetic2 geodeticPosition = _owner.ellipsoid().cartesianToGeodetic2(position);
int chunkLevel = findChunkNode(geodeticPosition).getChunk().tileIndex().level;
TileIndex tileIndex = TileIndex(geodeticPosition, chunkLevel);
GeodeticPatch patch = GeodeticPatch(tileIndex);
Geodetic2 geoDiffPatch =
patch.getCorner(Quad::NORTH_EAST) - patch.getCorner(Quad::SOUTH_WEST);
Geodetic2 geoDiffPoint = geodeticPosition - patch.getCorner(Quad::SOUTH_WEST);
glm::vec2 patchUV = glm::vec2(
geoDiffPoint.lon / geoDiffPatch.lon,
geoDiffPoint.lat / geoDiffPatch.lat
);
// Get the tile providers for the height maps
const std::vector<std::shared_ptr<Layer>>& heightMapLayers =
_layerManager->layerGroup(layergroupid::GroupID::HeightLayers).activeLayers();
for (const std::shared_ptr<Layer>& layer : heightMapLayers) {
tileprovider::TileProvider* tileProvider = layer->tileProvider();
if (!tileProvider) {
continue;
}
// Transform the uv coordinates to the current tile texture
ChunkTile chunkTile = tileProvider->getChunkTile(tileIndex);
const Tile& tile = chunkTile.tile;
const TileUvTransform& uvTransform = chunkTile.uvTransform;
const TileDepthTransform& depthTransform = tileProvider->depthTransform();
if (tile.status() != Tile::Status::OK) {
return 0;
}
ghoul::opengl::Texture* tileTexture = tile.texture();
if (!tileTexture) {
return 0;
}
glm::vec2 transformedUv = layer->TileUvToTextureSamplePosition(
uvTransform,
patchUV,
glm::uvec2(tileTexture->dimensions())
);
// Sample and do linear interpolation
// (could possibly be moved as a function in ghoul texture)
// Suggestion: a function in ghoul::opengl::Texture that takes uv coordinates
// in range [0,1] and uses the set interpolation method and clamping.
glm::uvec3 dimensions = tileTexture->dimensions();
glm::vec2 samplePos = transformedUv * glm::vec2(dimensions);
glm::uvec2 samplePos00 = samplePos;
samplePos00 = glm::clamp(
samplePos00,
glm::uvec2(0, 0),
glm::uvec2(dimensions) - glm::uvec2(1)
);
glm::vec2 samplePosFract = samplePos - glm::vec2(samplePos00);
glm::uvec2 samplePos10 = glm::min(
samplePos00 + glm::uvec2(1, 0),
glm::uvec2(dimensions) - glm::uvec2(1)
);
glm::uvec2 samplePos01 = glm::min(
samplePos00 + glm::uvec2(0, 1),
glm::uvec2(dimensions) - glm::uvec2(1)
);
glm::uvec2 samplePos11 = glm::min(
samplePos00 + glm::uvec2(1, 1),
glm::uvec2(dimensions) - glm::uvec2(1)
);
float sample00 = tileTexture->texelAsFloat(samplePos00).x;
float sample10 = tileTexture->texelAsFloat(samplePos10).x;
float sample01 = tileTexture->texelAsFloat(samplePos01).x;
float sample11 = tileTexture->texelAsFloat(samplePos11).x;
// In case the texture has NaN or no data values don't use this height map.
bool anySampleIsNaN =
std::isnan(sample00) ||
std::isnan(sample01) ||
std::isnan(sample10) ||
std::isnan(sample11);
bool anySampleIsNoData =
sample00 == tileProvider->noDataValueAsFloat() ||
sample01 == tileProvider->noDataValueAsFloat() ||
sample10 == tileProvider->noDataValueAsFloat() ||
sample11 == tileProvider->noDataValueAsFloat();
if (anySampleIsNaN || anySampleIsNoData) {
continue;
}
float sample0 = sample00 * (1.f - samplePosFract.x) + sample10 * samplePosFract.x;
float sample1 = sample01 * (1.f - samplePosFract.x) + sample11 * samplePosFract.x;
float sample = sample0 * (1.f - samplePosFract.y) + sample1 * samplePosFract.y;
// Same as is used in the shader. This is not a perfect solution but
// if the sample is actually a no-data-value (min_float) the interpolated
// value might not be. Therefore we have a cut-off. Assuming no data value
// is smaller than -100000
if (sample > -100000)
{
// Perform depth transform to get the value in meters
height = depthTransform.depthOffset + depthTransform.depthScale * sample;
// Make sure that the height value follows the layer settings.
// For example if the multiplier is set to a value bigger than one,
// the sampled height should be modified as well.
height = layer->renderSettings().performLayerSettings(height);
}
}
// Return the result
return height;
}
void ChunkedLodGlobe::notifyShaderRecompilation() {
_shadersNeedRecompilation = true;
}
void ChunkedLodGlobe::recompileShaders() {
_renderer->recompileShaders(_owner);
_shadersNeedRecompilation = false;
}
void ChunkedLodGlobe::render(const RenderData& data, RendererTasks&) {
stats.startNewRecord();
if (_shadersNeedRecompilation) {
_renderer->recompileShaders(_owner);
_shadersNeedRecompilation = false;
}
auto duration = std::chrono::system_clock::now().time_since_epoch();
auto millis = std::chrono::duration_cast<std::chrono::milliseconds>(duration).count();
stats.i["time"] = millis;
_leftRoot->updateChunkTree(data);
_rightRoot->updateChunkTree(data);
// Calculate the MVP matrix
glm::dmat4 viewTransform = glm::dmat4(data.camera.combinedViewMatrix());
glm::dmat4 vp = glm::dmat4(data.camera.sgctInternal.projectionMatrix()) * viewTransform;
glm::dmat4 mvp = vp * _owner.modelTransform();
// Render function
auto renderJob = [this, &data, &mvp](const ChunkNode& chunkNode) {
stats.i["chunks nodes"]++;
const Chunk& chunk = chunkNode.getChunk();
if (chunkNode.isLeaf()) {
stats.i["leafs chunk nodes"]++;
if (chunk.isVisible()) {
stats.i["rendered chunks"]++;
_renderer->renderChunk(chunkNode.getChunk(), data);
debugRenderChunk(chunk, mvp);
}
}
};
_leftRoot->breadthFirst(renderJob);
_rightRoot->breadthFirst(renderJob);
//_leftRoot->reverseBreadthFirst(renderJob);
//_rightRoot->reverseBreadthFirst(renderJob);
auto duration2 = std::chrono::system_clock::now().time_since_epoch();
auto millis2 = std::chrono::duration_cast<std::chrono::milliseconds>(duration2).count();
stats.i["chunk globe render time"] = millis2 - millis;
}
void ChunkedLodGlobe::debugRenderChunk(const Chunk& chunk, const glm::dmat4& mvp) const {
if (_owner.debugProperties().showChunkBounds ||
_owner.debugProperties().showChunkAABB)
{
const std::vector<glm::dvec4> modelSpaceCorners =
chunk.getBoundingPolyhedronCorners();
std::vector<glm::vec4> clippingSpaceCorners(8);
AABB3 screenSpaceBounds;
for (size_t i = 0; i < 8; ++i) {
const glm::vec4& clippingSpaceCorner = mvp * modelSpaceCorners[i];
clippingSpaceCorners[i] = clippingSpaceCorner;
glm::vec3 screenSpaceCorner =
glm::vec3((1.0f / clippingSpaceCorner.w) * clippingSpaceCorner);
screenSpaceBounds.expand(screenSpaceCorner);
}
unsigned int colorBits = 1 + chunk.tileIndex().level % 6;
glm::vec4 color = glm::vec4(colorBits & 1, colorBits & 2, colorBits & 4, 0.3);
if (_owner.debugProperties().showChunkBounds) {
DebugRenderer::ref().renderNiceBox(clippingSpaceCorners, color);
}
if (_owner.debugProperties().showChunkAABB) {
auto& screenSpacePoints =
DebugRenderer::ref().verticesFor(screenSpaceBounds);
DebugRenderer::ref().renderNiceBox(screenSpacePoints, color);
}
}
}
void ChunkedLodGlobe::update(const UpdateData& data) {
setBoundingSphere(static_cast<float>(
_owner.ellipsoid().maximumRadius() * data.modelTransform.scale
));
_renderer->update();
}
} // namespace openspace::globebrowsing