mirror of
https://github.com/OpenSpace/OpenSpace.git
synced 2026-01-08 04:31:08 -06:00
487 lines
17 KiB
C++
487 lines
17 KiB
C++
// /*****************************************************************************************
|
|
// * *
|
|
// * OpenSpace *
|
|
// * *
|
|
// * Copyright (c) 2014-2016 *
|
|
// * *
|
|
// * Permission is hereby granted, free of charge, to any person obtaining a copy of this *
|
|
// * software and associated documentation files (the "Software"), to deal in the Software *
|
|
// * without restriction, including without limitation the rights to use, copy, modify, *
|
|
// * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
|
|
// * permit persons to whom the Software is furnished to do so, subject to the following *
|
|
// * conditions: *
|
|
// * *
|
|
// * The above copyright notice and this permission notice shall be included in all copies *
|
|
// * or substantial portions of the Software. *
|
|
// * *
|
|
// * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
|
|
// * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
|
|
// * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
|
|
// * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
|
|
// * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
|
|
// * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
|
|
// ****************************************************************************************/
|
|
|
|
#include <modules/iswa/rendering/dataplane.h>
|
|
#include <ghoul/io/texture/texturereader.h>
|
|
#include <ghoul/opengl/programobject.h>
|
|
#include <ghoul/opengl/textureunit.h>
|
|
#include <openspace/scene/scene.h>
|
|
#include <openspace/scene/scenegraphnode.h>
|
|
#include <openspace/engine/openspaceengine.h>
|
|
#include <openspace/rendering/renderengine.h>
|
|
#include <openspace/util/spicemanager.h>
|
|
|
|
namespace {
|
|
const std::string _loggerCat = "DataPlane";
|
|
}
|
|
|
|
namespace openspace {
|
|
|
|
DataPlane::DataPlane(const ghoul::Dictionary& dictionary)
|
|
:CygnetPlane(dictionary)
|
|
,_dataOptions("dataOptions", "Data Options")
|
|
,_normValues("normValues", "Normalize Values", glm::vec2(1.0,1.0), glm::vec2(0), glm::vec2(5.0))
|
|
,_backgroundValues("backgroundValues", "Background Values", glm::vec2(0.0), glm::vec2(0), glm::vec2(1.0))
|
|
,_useLog("useLog","Use Logarithm", false)
|
|
,_useHistogram("_useHistogram", "Use Histogram", true)
|
|
,_useRGB("useRGB","Use RGB Channels", false)
|
|
,_averageValues("averageValues", "Average values", false)
|
|
// ,_colorbar(nullptr)
|
|
{
|
|
std::string name;
|
|
dictionary.getValue("Name", name);
|
|
setName(name);
|
|
|
|
addProperty(_useLog);
|
|
addProperty(_useHistogram);
|
|
addProperty(_useRGB);
|
|
addProperty(_normValues);
|
|
addProperty(_backgroundValues);
|
|
addProperty(_averageValues);
|
|
addProperty(_dataOptions);
|
|
|
|
registerProperties();
|
|
|
|
OsEng.gui()._iSWAproperty.registerProperty(&_useLog);
|
|
OsEng.gui()._iSWAproperty.registerProperty(&_useHistogram);
|
|
OsEng.gui()._iSWAproperty.registerProperty(&_useRGB);
|
|
OsEng.gui()._iSWAproperty.registerProperty(&_normValues);
|
|
OsEng.gui()._iSWAproperty.registerProperty(&_backgroundValues);
|
|
OsEng.gui()._iSWAproperty.registerProperty(&_averageValues);
|
|
OsEng.gui()._iSWAproperty.registerProperty(&_dataOptions);
|
|
|
|
_normValues.onChange([this](){loadTexture();});
|
|
_useLog.onChange([this](){loadTexture();});
|
|
_useHistogram.onChange([this](){loadTexture();});
|
|
_dataOptions.onChange([this](){
|
|
if( _useRGB.value() && (_dataOptions.value().size() > 3)){
|
|
LWARNING("More than 3 values, using only the red channel.");
|
|
}
|
|
loadTexture();
|
|
});
|
|
|
|
_useRGB.onChange([this](){
|
|
changeTransferFunctions(_useRGB.value());
|
|
});
|
|
}
|
|
|
|
DataPlane::~DataPlane(){}
|
|
|
|
|
|
bool DataPlane::initialize(){
|
|
initializeTime();
|
|
|
|
createPlane();
|
|
|
|
if (_shader == nullptr) {
|
|
// DatePlane Program
|
|
RenderEngine& renderEngine = OsEng.renderEngine();
|
|
_shader = renderEngine.buildRenderProgram("DataPlaneProgram",
|
|
"${MODULE_ISWA}/shaders/dataplane_vs.glsl",
|
|
"${MODULE_ISWA}/shaders/dataplane_fs.glsl"
|
|
);
|
|
if (!_shader)
|
|
return false;
|
|
}
|
|
|
|
updateTexture();
|
|
|
|
std::string tfPath = "${OPENSPACE_DATA}/scene/iswa/transferfunctions/colormap_parula.jpg";
|
|
_transferFunctions.push_back(std::make_shared<TransferFunction>(tfPath));
|
|
|
|
// std::cout << "Creating Colorbar" << std::endl;
|
|
// _colorbar = std::make_shared<ColorBar>();
|
|
// if(_colorbar){
|
|
// _colorbar->initialize();
|
|
// }
|
|
|
|
// _textures.push_back(nullptr);
|
|
|
|
return isReady();
|
|
}
|
|
|
|
bool DataPlane::deinitialize(){
|
|
unregisterProperties();
|
|
destroyPlane();
|
|
destroyShader();
|
|
|
|
_textures[0] = nullptr;
|
|
_memorybuffer = "";
|
|
|
|
// _colorbar->deinitialize();
|
|
// _colorbar = nullptr;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DataPlane::loadTexture() {
|
|
std::vector<float*> data = readData();
|
|
if(data.empty())
|
|
return false;
|
|
|
|
bool texturesReady = false;
|
|
std::vector<int> selectedOptions = _dataOptions.value();
|
|
|
|
for(int option: selectedOptions){
|
|
float* values = data[option];
|
|
if(!values) continue;
|
|
|
|
if(!_textures[option]){
|
|
std::unique_ptr<ghoul::opengl::Texture> texture = std::make_unique<ghoul::opengl::Texture>(
|
|
values,
|
|
_dimensions,
|
|
ghoul::opengl::Texture::Format::Red,
|
|
GL_RED,
|
|
GL_FLOAT,
|
|
ghoul::opengl::Texture::FilterMode::Linear,
|
|
ghoul::opengl::Texture::WrappingMode::ClampToEdge
|
|
);
|
|
|
|
if(texture){
|
|
texture->uploadTexture();
|
|
texture->setFilter(ghoul::opengl::Texture::FilterMode::Linear);
|
|
_textures[option] = std::move(texture);
|
|
}
|
|
}else{
|
|
_textures[option]->setPixelData(values);
|
|
_textures[option]->uploadTexture();
|
|
}
|
|
texturesReady = true;
|
|
}
|
|
|
|
return texturesReady;
|
|
}
|
|
|
|
bool DataPlane::updateTexture(){
|
|
if(_futureObject)
|
|
return false;
|
|
|
|
_memorybuffer = "";
|
|
std::shared_ptr<DownloadManager::FileFuture> future = ISWAManager::ref().downloadDataToMemory(_data->id, _memorybuffer);
|
|
|
|
if(future){
|
|
_futureObject = future;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void DataPlane::setUniforms(){
|
|
|
|
// _shader->setUniform("textures", 1, units[1]);
|
|
// _shader->setUniform("textures", 2, units[2]);
|
|
// }
|
|
std::vector<int> selectedOptions = _dataOptions.value();
|
|
int activeTextures = selectedOptions.size();
|
|
|
|
int activeTransferfunctions = _transferFunctions.size();
|
|
|
|
ghoul::opengl::TextureUnit txUnits[activeTextures];
|
|
int j = 0;
|
|
for(int option : selectedOptions){
|
|
if(_textures[option]){
|
|
txUnits[j].activate();
|
|
_textures[option]->bind();
|
|
_shader->setUniform(
|
|
"textures[" + std::to_string(j) + "]",
|
|
txUnits[j]
|
|
);
|
|
|
|
j++;
|
|
}
|
|
}
|
|
|
|
ghoul::opengl::TextureUnit tfUnits[activeTransferfunctions];
|
|
j = 0;
|
|
|
|
if((activeTransferfunctions == 1) && (_textures.size() != _transferFunctions.size())) {
|
|
tfUnits[0].activate();
|
|
_transferFunctions[0]->bind();
|
|
_shader->setUniform(
|
|
"transferFunctions[0]",
|
|
tfUnits[0]
|
|
);
|
|
}else{
|
|
for(int option : selectedOptions){
|
|
std::cout << option << std::endl;
|
|
if(_transferFunctions[option]){
|
|
tfUnits[j].activate();
|
|
_transferFunctions[option]->bind();
|
|
_shader->setUniform(
|
|
"transferFunctions[" + std::to_string(j) + "]",
|
|
tfUnits[j]
|
|
);
|
|
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
_shader->setUniform("numTextures", activeTextures);
|
|
_shader->setUniform("numTransferFunctions", activeTransferfunctions);
|
|
_shader->setUniform("backgroundValues", _backgroundValues.value());
|
|
};
|
|
|
|
bool DataPlane::textureReady(){
|
|
return (!_textures.empty());
|
|
}
|
|
|
|
void DataPlane::readHeader(){
|
|
if(!_memorybuffer.empty()){
|
|
std::stringstream memorystream(_memorybuffer);
|
|
std::string line;
|
|
|
|
int numOptions = 0;
|
|
while(getline(memorystream,line)){
|
|
if(line.find("#") == 0){
|
|
if(line.find("# Output data:") == 0){
|
|
|
|
line = line.substr(26);
|
|
std::stringstream ss(line);
|
|
|
|
std::string token;
|
|
getline(ss, token, 'x');
|
|
int x = std::stoi(token);
|
|
|
|
getline(ss, token, '=');
|
|
int y = std::stoi(token);
|
|
|
|
_dimensions = glm::size3_t(x, y, 1);
|
|
|
|
getline(memorystream, line);
|
|
line = line.substr(1);
|
|
|
|
ss = std::stringstream(line);
|
|
std::string option;
|
|
while(ss >> option){
|
|
if(option != "x" && option != "y" && option != "z"){
|
|
_dataOptions.addOption({numOptions, name()+"_"+option});
|
|
numOptions++;
|
|
_textures.push_back(nullptr);
|
|
}
|
|
}
|
|
|
|
std::vector<int> v(1,0);
|
|
_dataOptions.setValue(v);
|
|
}
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
}else{
|
|
LWARNING("Noting in memory buffer, are you connected to the information super highway?");
|
|
}
|
|
}
|
|
|
|
std::vector<float*> DataPlane::readData(){
|
|
if(!_memorybuffer.empty()){
|
|
if(!_dataOptions.options().size()) // load options for value selection
|
|
readHeader();
|
|
|
|
std::stringstream memorystream(_memorybuffer);
|
|
std::string line;
|
|
|
|
std::vector<int> selectedOptions = _dataOptions.value();
|
|
|
|
int numSelected = selectedOptions.size();
|
|
|
|
std::vector<float> min(numSelected, std::numeric_limits<float>::max());
|
|
std::vector<float> max(numSelected, std::numeric_limits<float>::min());
|
|
|
|
std::vector<float> sum(numSelected, 0.0f);
|
|
std::vector<std::vector<float>> optionValues(numSelected, std::vector<float>());
|
|
|
|
std::vector<float*> data(_dataOptions.options().size(), nullptr);
|
|
for(int option : selectedOptions){
|
|
data[option] = new float[_dimensions.x*_dimensions.y]{0.0f};
|
|
}
|
|
|
|
int numValues = 0;
|
|
while(getline(memorystream, line)){
|
|
if(line.find("#") == 0){ //part of the header
|
|
continue;
|
|
}
|
|
|
|
std::stringstream ss(line);
|
|
std::vector<float> value;
|
|
float v;
|
|
while(ss >> v){
|
|
value.push_back(v);
|
|
}
|
|
|
|
if(value.size()){
|
|
for(int i=0; i<numSelected; i++){
|
|
|
|
float v = value[selectedOptions[i]+3]; //+3 because "options" x, y and z.
|
|
|
|
if(_useLog.value()){
|
|
int sign = (v>0)? 1:-1;
|
|
if(v != 0){
|
|
v = sign*log(fabs(v));
|
|
}
|
|
}
|
|
|
|
optionValues[i].push_back(v);
|
|
|
|
min[i] = std::min(min[i], v);
|
|
max[i] = std::max(max[i], v);
|
|
|
|
sum[i] += v;
|
|
}
|
|
numValues++;
|
|
}
|
|
}
|
|
|
|
if(numValues != _dimensions.x*_dimensions.y){
|
|
LWARNING("Number of values read and expected are not the same");
|
|
return std::vector<float*>();
|
|
}
|
|
|
|
for(int i=0; i<numSelected; i++){
|
|
processData(data, selectedOptions[i], optionValues[i], min[i], max[i], sum[i]);
|
|
}
|
|
|
|
return data;
|
|
|
|
}
|
|
else {
|
|
LWARNING("Nothing in memory buffer, are you connected to the information super highway?");
|
|
return std::vector<float*>();
|
|
}
|
|
}
|
|
|
|
void DataPlane::processData(std::vector<float*> outputData, int inputChannel, std::vector<float> inputData, float min, float max,float sum){
|
|
|
|
float* output = outputData[inputChannel];
|
|
// HISTOGRAM
|
|
// number of levels/bins/values
|
|
const int levels = 512;
|
|
// Normal Histogram where "levels" is the number of steps/bins
|
|
std::vector<int> histogram = std::vector<int>(levels, 0);
|
|
// Maps the old levels to new ones.
|
|
std::vector<float> newLevels = std::vector<float>(levels, 0.0f);
|
|
|
|
const int numValues = inputData.size();
|
|
|
|
// maps the data values to the histogram bin/index/level
|
|
auto mapToHistogram = [levels](float val, float varMin, float varMax) {
|
|
float probability = (val-varMin)/(varMax-varMin);
|
|
float mappedValue = probability * levels;
|
|
return glm::clamp(mappedValue, 0.0f, static_cast<float>(levels - 1));
|
|
};
|
|
|
|
//Calculate the mean
|
|
float mean = (1.0 / numValues) * sum;
|
|
//Calculate the Standard Deviation
|
|
float standardDeviation = sqrt (((pow(sum, 2.0)) - ((1.0/numValues) * (pow(sum,2.0)))) / (numValues - 1.0));
|
|
//calulate log mean
|
|
// logmean /= numValues;
|
|
|
|
//HISTOGRAM FUNCTIONALITY
|
|
//======================
|
|
if(_useHistogram.value()){
|
|
for(int i = 0; i < numValues; i++){
|
|
float v = inputData[i];
|
|
float pixelVal = mapToHistogram(v, min, max);
|
|
histogram[(int)pixelVal]++;
|
|
inputData[i] = pixelVal;
|
|
}
|
|
|
|
// Map mean and standard deviation to histogram levels
|
|
mean = mapToHistogram(mean , min, max);
|
|
// logmean = mapToHistogram(logmean , min, max);
|
|
standardDeviation = mapToHistogram(standardDeviation, min, max);
|
|
min = 0.0f;
|
|
max = levels - 1.0f;
|
|
|
|
//Calculate the cumulative distributtion function (CDF)
|
|
float previousCdf = 0.0f;
|
|
for(int i = 0; i < levels; i++){
|
|
|
|
float probability = histogram[i] / (float)numValues;
|
|
float cdf = previousCdf + probability;
|
|
cdf = glm::clamp(cdf, 0.0f, 1.0f); //just in case
|
|
newLevels[i] = cdf * (levels-1);
|
|
previousCdf = cdf;
|
|
}
|
|
}
|
|
//======================
|
|
|
|
for(int i=0; i< numValues; i++){
|
|
|
|
float v = inputData[i];
|
|
|
|
// if use histogram get the equalized values
|
|
if(_useHistogram.value()){
|
|
v = newLevels[(int)v];
|
|
|
|
// Map mean and standard deviation to new histogram levels
|
|
mean = newLevels[(int) mean];
|
|
// logmean = newLevels[(int) logmean];
|
|
standardDeviation = newLevels[(int) standardDeviation];
|
|
}
|
|
|
|
v = normalizeWithStandardScore(v, mean, standardDeviation);
|
|
output[i] += v;
|
|
|
|
}
|
|
}
|
|
|
|
float DataPlane::normalizeWithStandardScore(float value, float mean, float sd){
|
|
|
|
float zScoreMin = _normValues.value().x;
|
|
float zScoreMax = _normValues.value().y;
|
|
float standardScore = ( value - mean ) / sd;
|
|
// Clamp intresting values
|
|
standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
|
|
//return and normalize
|
|
return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax );
|
|
}
|
|
|
|
float DataPlane::normalizeWithLogarithm(float value, int logMean){
|
|
float logMin = 10*_normValues.value().x;
|
|
float logMax = 10*_normValues.value().y;
|
|
|
|
float logNormalized = ((value/pow(10,logMean)+logMin))/(logMin+logMax);
|
|
return glm::clamp(logNormalized,0.0f, 1.0f);
|
|
}
|
|
|
|
void DataPlane::changeTransferFunctions(bool multiple){
|
|
_transferFunctions.clear();
|
|
std::string tfPath;
|
|
if(multiple){
|
|
tfPath = "${OPENSPACE_DATA}/scene/iswa/transferfunctions/red.jpg";
|
|
_transferFunctions.push_back(std::make_shared<TransferFunction>(tfPath));
|
|
tfPath = "${OPENSPACE_DATA}/scene/iswa/transferfunctions/blue.jpg";
|
|
_transferFunctions.push_back(std::make_shared<TransferFunction>(tfPath));
|
|
tfPath = "${OPENSPACE_DATA}/scene/iswa/transferfunctions/green.jpg";
|
|
_transferFunctions.push_back(std::make_shared<TransferFunction>(tfPath));
|
|
}else{
|
|
tfPath = "${OPENSPACE_DATA}/scene/iswa/transferfunctions/colormap_parula.jpg";
|
|
_transferFunctions.push_back(std::make_shared<TransferFunction>(tfPath));
|
|
}
|
|
}
|
|
}// namespace openspace
|