Files
OpenSpace/modules/multiresvolume/rendering/errorhistogrammanager.cpp
Emil Axelsson 50ff2d96d2 Cleanup for Spheres and PSC (#827)
* Fade fixes
  * Clean up RenderableSphere. Add orientation properties.
  * Sane defaults for Digital Universe
  * Clean up New Horizons related code
  * Add basic scene
  * Add ability to initialize rotation as quaternion and mat3
  * Adapt legacy code to new Renderable interface
2019-04-24 13:34:49 +02:00

398 lines
16 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2019 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/multiresvolume/rendering/errorhistogrammanager.h>
#include <modules/multiresvolume/rendering/tsp.h>
#include <openspace/util/progressbar.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/fmt.h>
namespace openspace {
ErrorHistogramManager::ErrorHistogramManager(TSP* tsp) : _tsp(tsp) {}
bool ErrorHistogramManager::buildHistograms(int numBins) {
_numBins = numBins;
_file = &(_tsp->file());
if (!_file->is_open()) {
return false;
}
_minBin = 0.f; // Should be calculated from tsp file
_maxBin = 1.f; // Should be calculated from tsp file as (maxValue - minValue)
unsigned int numOtLevels = _tsp->numOTLevels();
unsigned int numOtLeaves = static_cast<unsigned int>(pow(8, numOtLevels - 1));
unsigned int numBstLeaves = static_cast<unsigned int>(
pow(2, _tsp->numBSTLevels() - 1)
);
_numInnerNodes = _tsp->numTotalNodes() - numOtLeaves * numBstLeaves;
_histograms = std::vector<Histogram>(_numInnerNodes);
LINFOC(
"ErrorHistogramManager",
fmt::format("Build {} histograms with {} bins each", _numInnerNodes, numBins)
);
// All TSP Leaves
int numOtNodes = _tsp->numOTNodes();
int otOffset = static_cast<int>((pow(8, numOtLevels - 1) - 1) / 7);
int numBstNodes = _tsp->numBSTNodes();
int bstOffset = numBstNodes / 2;
int numberOfLeaves = (numBstNodes - bstOffset) * (numOtNodes - otOffset);
ProgressBar pb(numberOfLeaves);
int processedLeaves = 0;
bool success = true;
for (int bst = bstOffset; bst < numBstNodes; bst++) {
for (int ot = otOffset; ot < numOtNodes; ot++) {
success &= buildFromLeaf(bst, ot);
if (!success) {
return false;
}
pb.print(++processedLeaves);
}
}
return success;
}
bool ErrorHistogramManager::buildFromLeaf(unsigned int bstOffset,
unsigned int octreeOffset)
{
// Traverse all ancestors of leaf and add errors to their histograms
unsigned int brickDim = _tsp->brickDim();
unsigned int paddedBrickDim = _tsp->paddedBrickDim();
unsigned int padding = (paddedBrickDim - brickDim) / 2;
int numOtNodes = _tsp->numOTNodes();
unsigned int leafIndex = bstOffset * numOtNodes + octreeOffset;
std::vector<float> leafValues = readValues(leafIndex);
// int numVoxels = leafValues.size();
int bstNode = bstOffset;
bool bstRightOnly = true;
unsigned int bstLevel = 0;
do {
glm::vec3 leafOffset(0.f); // Leaf offset in leaf sized voxels
unsigned int octreeLevel = 0;
unsigned int octreeNode = octreeOffset;
bool octreeLastOnly = true;
do {
// Visit ancestor
if (bstNode != static_cast<int>(bstOffset) || octreeNode != octreeOffset) {
// Is actually an ancestor
std::vector<float> ancestorVoxels;
unsigned int ancestorBrickIndex = bstNode * numOtNodes + octreeNode;
unsigned int innerNodeIndex = brickToInnerNodeIndex(ancestorBrickIndex);
auto it = _voxelCache.find(innerNodeIndex);
if (it == _voxelCache.end()) {
// First visit
_histograms[innerNodeIndex] = Histogram(_minBin, _maxBin, _numBins);
ancestorVoxels = readValues(ancestorBrickIndex);
_voxelCache[innerNodeIndex] = ancestorVoxels;
} else {
ancestorVoxels = it->second;
}
float voxelScale = static_cast<float>(pow(2.f, octreeLevel));
float invVoxelScale = 1.f / voxelScale;
// Calculate leaf offset in ancestor sized voxels
glm::vec3 ancestorOffset = (leafOffset * invVoxelScale) +
glm::vec3(padding - 0.5f);
for (int z = 0; z < static_cast<int>(brickDim); z++) {
for (int y = 0; y < static_cast<int>(brickDim); y++) {
for (int x = 0; x < static_cast<int>(brickDim); x++) {
glm::vec3 leafSamplePoint = glm::vec3(x, y, z) +
glm::vec3(static_cast<float>(padding));
glm::vec3 ancestorSamplePoint = ancestorOffset +
(glm::vec3(x, y, z) + glm::vec3(0.5)) * invVoxelScale;
float leafValue = leafValues[linearCoords(leafSamplePoint)];
float ancestorValue = interpolate(
ancestorSamplePoint,
ancestorVoxels
);
_histograms[innerNodeIndex].addRectangle(
leafValue,
ancestorValue,
std::abs(leafValue - ancestorValue)
);
}
}
}
if (bstRightOnly && octreeLastOnly) {
_voxelCache.erase(innerNodeIndex);
}
}
// Traverse to next octree ancestor
int octreeChild = (octreeNode - 1) % 8;
octreeLastOnly &= octreeChild == 7;
octreeNode = parentOffset(octreeNode, 8);
int childSize = static_cast<int>(pow(2, octreeLevel) * brickDim);
leafOffset.x += (octreeChild % 2) * childSize;
leafOffset.y += ((octreeChild / 2) % 2) * childSize;
leafOffset.z += (octreeChild / 4) * childSize;
octreeLevel++;
// @TODO(emiax): This does not make sense? unsigned int check against -1
} while (octreeNode != -1);
bstRightOnly &= (bstNode % 2 == 0);
bstNode = parentOffset(bstNode, 2);
bstLevel++;
} while (bstNode != -1);
return true;
}
bool ErrorHistogramManager::loadFromFile(const std::string& filename) {
std::ifstream file(filename, std::ios::in | std::ios::binary);
if (!file.is_open()) {
return false;
}
file.read(reinterpret_cast<char*>(&_numInnerNodes), sizeof(int));
file.read(reinterpret_cast<char*>(&_numBins), sizeof(int));
file.read(reinterpret_cast<char*>(&_minBin), sizeof(float));
file.read(reinterpret_cast<char*>(&_maxBin), sizeof(float));
int nFloats = _numInnerNodes * _numBins;
float* histogramData = new float[nFloats];
file.read(reinterpret_cast<char*>(histogramData), sizeof(float) * nFloats);
_histograms = std::vector<Histogram>(_numInnerNodes);
for (int i = 0; i < static_cast<int>(_numInnerNodes); ++i) {
int offset = i * _numBins;
float* data = new float[_numBins];
memcpy(data, &histogramData[offset], sizeof(float) * _numBins);
_histograms[i] = Histogram(_minBin, _maxBin, _numBins, data);
}
delete[] histogramData;
// No need to deallocate histogram data, since histograms take ownership.
file.close();
return true;
}
bool ErrorHistogramManager::saveToFile(const std::string& filename) {
std::ofstream file(filename, std::ios::out | std::ios::binary);
if (!file.is_open()) {
return false;
}
file.write(reinterpret_cast<char*>(&_numInnerNodes), sizeof(int));
file.write(reinterpret_cast<char*>(&_numBins), sizeof(int));
file.write(reinterpret_cast<char*>(&_minBin), sizeof(float));
file.write(reinterpret_cast<char*>(&_maxBin), sizeof(float));
int nFloats = _numInnerNodes * _numBins;
float* histogramData = new float[nFloats];
for (unsigned int i = 0; i < _numInnerNodes; ++i) {
int offset = i * _numBins;
memcpy(&histogramData[offset], _histograms[i].data(), sizeof(float) * _numBins);
}
file.write(reinterpret_cast<char*>(histogramData), sizeof(float) * nFloats);
delete[] histogramData;
file.close();
return true;
}
unsigned int ErrorHistogramManager::linearCoords(const glm::vec3& coords) const {
return linearCoords(glm::ivec3(coords));
}
unsigned int ErrorHistogramManager::linearCoords(int x, int y, int z) const {
return linearCoords(glm::ivec3(x, y, z));
}
unsigned int ErrorHistogramManager::linearCoords(const glm::ivec3& coords) const {
const unsigned int paddedBrickDim = _tsp->paddedBrickDim();
return coords.z * paddedBrickDim * paddedBrickDim +
coords.y * paddedBrickDim + coords.x;
}
float ErrorHistogramManager::interpolate(const glm::vec3& samplePoint,
const std::vector<float>& voxels) const
{
const int lowX = static_cast<int>(samplePoint.x);
const int lowY = static_cast<int>(samplePoint.y);
const int lowZ = static_cast<int>(samplePoint.z);
const int highX = static_cast<int>(ceil(samplePoint.x));
const int highY = static_cast<int>(ceil(samplePoint.y));
const int highZ = static_cast<int>(ceil(samplePoint.z));
const float interpolatorX = 1.f - (samplePoint.x - lowX);
const float interpolatorY = 1.f - (samplePoint.y - lowY);
const float interpolatorZ = 1.f - (samplePoint.z - lowZ);
const float v000 = voxels[linearCoords(lowX, lowY, lowZ)];
const float v001 = voxels[linearCoords(lowX, lowY, highZ)];
const float v010 = voxels[linearCoords(lowX, highY, lowZ)];
const float v011 = voxels[linearCoords(lowX, highY, highZ)];
const float v100 = voxels[linearCoords(highX, lowY, lowZ)];
const float v101 = voxels[linearCoords(highX, lowY, highZ)];
const float v110 = voxels[linearCoords(highX, highY, lowZ)];
const float v111 = voxels[linearCoords(highX, highY, highZ)];
const float v00 = interpolatorZ * v000 + (1.f - interpolatorZ) * v001;
const float v01 = interpolatorZ * v010 + (1.f - interpolatorZ) * v011;
const float v10 = interpolatorZ * v100 + (1.f - interpolatorZ) * v101;
const float v11 = interpolatorZ * v110 + (1.f - interpolatorZ) * v111;
const float v0 = interpolatorY * v00 + (1.f - interpolatorY) * v01;
const float v1 = interpolatorY * v10 + (1.f - interpolatorY) * v11;
return interpolatorX * v0 + (1.f - interpolatorX) * v1;
}
const Histogram* ErrorHistogramManager::histogram(unsigned int brickIndex) const {
const unsigned int innerNodeIndex = brickToInnerNodeIndex(brickIndex);
if (innerNodeIndex < _numInnerNodes) {
return &(_histograms[innerNodeIndex]);
} else {
return nullptr;
}
}
int ErrorHistogramManager::parentOffset(int offset, int base) const {
if (offset == 0) {
return -1;
}
const int depth = static_cast<int>(
floor(log(((base - 1) * offset + 1.0)) / log(base))
);
const int firstInLevel = static_cast<int>((pow(base, depth) - 1) / (base - 1));
const int inLevelOffset = offset - firstInLevel;
const int parentDepth = depth - 1;
const int firstInParentLevel = static_cast<int>(
(pow(base, parentDepth) - 1) / (base - 1)
);
const int parentInLevelOffset = inLevelOffset / base;
const int parentOffset = firstInParentLevel + parentInLevelOffset;
return parentOffset;
}
std::vector<float> ErrorHistogramManager::readValues(unsigned int brickIndex) const {
const unsigned int paddedBrickDim = _tsp->paddedBrickDim();
const unsigned int numBrickVals = paddedBrickDim * paddedBrickDim * paddedBrickDim;
std::vector<float> voxelValues(numBrickVals);
std::streampos offset = _tsp->dataPosition() +
static_cast<long long>(brickIndex*numBrickVals*sizeof(float));
_file->seekg(offset);
_file->read(
reinterpret_cast<char*>(voxelValues.data()),
static_cast<size_t>(numBrickVals)*sizeof(float)
);
return voxelValues;
}
unsigned int ErrorHistogramManager::brickToInnerNodeIndex(unsigned int brickIndex) const {
const unsigned int numOtNodes = _tsp->numOTNodes();
const unsigned int numBstLevels = _tsp->numBSTLevels();
const unsigned int numInnerBstNodes = static_cast<int>(
(pow(2, numBstLevels - 1) - 1) * numOtNodes
);
if (brickIndex < numInnerBstNodes) {
return brickIndex;
}
const unsigned int numOtLeaves = static_cast<unsigned int>(
pow(8, _tsp->numOTLevels() - 1)
);
const unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves);
const unsigned int innerBstOffset = brickIndex - numInnerBstNodes;
const unsigned int rowIndex = innerBstOffset / numOtNodes;
const unsigned int indexInRow = innerBstOffset % numOtNodes;
if (indexInRow >= numOtInnerNodes) {
return std::numeric_limits<unsigned int>::max();
}
const unsigned int offset = rowIndex * numOtInnerNodes;
const unsigned int leavesOffset = offset + indexInRow;
return numInnerBstNodes + leavesOffset;
}
unsigned int ErrorHistogramManager::innerNodeToBrickIndex(
unsigned int innerNodeIndex) const
{
if (innerNodeIndex >= _numInnerNodes) {
return std::numeric_limits<unsigned int>::max(); // Not an inner node
}
const unsigned int numOtNodes = _tsp->numOTNodes();
const unsigned int numBstLevels = _tsp->numBSTLevels();
const unsigned int numInnerBstNodes = static_cast<unsigned int>(
(pow(2, numBstLevels - 1) - 1) * numOtNodes
);
if (innerNodeIndex < numInnerBstNodes) {
return innerNodeIndex;
}
const unsigned int numOtLeaves = static_cast<unsigned int>(
pow(8, _tsp->numOTLevels() - 1)
);
const unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves);
const unsigned int innerBstOffset = innerNodeIndex - numInnerBstNodes;
const unsigned int rowIndex = innerBstOffset / numOtInnerNodes;
const unsigned int indexInRow = innerBstOffset % numOtInnerNodes;
const unsigned int offset = rowIndex * numOtNodes;
const unsigned int leavesOffset = offset + indexInRow;
return numInnerBstNodes + leavesOffset;
}
} // namespace openspace