Files
OpenSpace/modules/atmosphere/rendering/atmospheredeferredcaster.cpp
2023-07-31 13:39:35 +02:00

1172 lines
47 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2023 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
/***************************************************************************************
* Modified part of the code (4D texture mechanism) from Eric Bruneton is used in the
* following code.
****************************************************************************************/
/**
* Precomputed Atmospheric Scattering
* Copyright (c) 2008 INRIA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <modules/atmosphere/rendering/atmospheredeferredcaster.h>
#include <openspace/engine/globals.h>
#include <openspace/query/query.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/scene/scene.h>
#include <openspace/util/spicemanager.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/opengl/openglstatecache.h>
#include <cmath>
#include <fstream>
namespace {
constexpr std::string_view _loggerCat = "AtmosphereDeferredcaster";
constexpr std::array<const char*, 29> UniformNames = {
"cullAtmosphere", "opacity", "Rg", "Rt", "groundRadianceEmission", "HR",
"betaRayleigh", "HM", "betaMieExtinction", "mieG", "sunRadiance",
"ozoneLayerEnabled", "HO", "betaOzoneExtinction", "SAMPLES_R", "SAMPLES_MU",
"SAMPLES_MU_S", "SAMPLES_NU", "inverseModelTransformMatrix",
"modelTransformMatrix", "projectionToModelTransformMatrix", "viewToWorldMatrix",
"camPosObj", "sunDirectionObj", "hardShadows", "transmittanceTexture",
"irradianceTexture", "inscatterTexture", "sunAngularSize"
};
constexpr float ATM_EPS = 2000.f;
constexpr float KM_TO_M = 1000.f;
template <GLenum colorBufferAttachment = GL_COLOR_ATTACHMENT0>
void saveTextureFile(const std::filesystem::path& fileName, const glm::ivec2& size) {
std::ofstream ppmFile(fileName);
if (!ppmFile.is_open()) {
return;
}
std::vector<unsigned char> px(
size.x * size.y * 3,
static_cast<unsigned char>(255)
);
glReadBuffer(colorBufferAttachment);
glReadPixels(0, 0, size.x, size.y, GL_RGB, GL_UNSIGNED_BYTE, px.data());
ppmFile << "P3" << '\n' << size.x << " " << size.y << '\n' << "255" << '\n';
int k = 0;
for (int i = 0; i < size.x; i++) {
for (int j = 0; j < size.y; j++) {
ppmFile << static_cast<unsigned int>(px[k]) << ' '
<< static_cast<unsigned int>(px[k + 1]) << ' '
<< static_cast<unsigned int>(px[k + 2]) << ' ';
k += 3;
}
ppmFile << '\n';
}
}
bool isAtmosphereInFrustum(const glm::dmat4& MVMatrix, const glm::dvec3& position,
double radius)
{
// Frustum Planes
glm::dvec3 col1 = glm::dvec3(MVMatrix[0][0], MVMatrix[1][0], MVMatrix[2][0]);
glm::dvec3 col2 = glm::dvec3(MVMatrix[0][1], MVMatrix[1][1], MVMatrix[2][1]);
glm::dvec3 col3 = glm::dvec3(MVMatrix[0][2], MVMatrix[1][2], MVMatrix[2][2]);
glm::dvec3 col4 = glm::dvec3(MVMatrix[0][3], MVMatrix[1][3], MVMatrix[2][3]);
glm::dvec3 leftNormal = col4 + col1;
glm::dvec3 rightNormal = col4 - col1;
glm::dvec3 bottomNormal = col4 + col2;
glm::dvec3 topNormal = col4 - col2;
glm::dvec3 nearNormal = col3 + col4;
glm::dvec3 farNormal = col4 - col3;
// Plane Distances
double leftDistance = MVMatrix[3][3] + MVMatrix[3][0];
double rightDistance = MVMatrix[3][3] - MVMatrix[3][0];
double bottomDistance = MVMatrix[3][3] + MVMatrix[3][1];
double topDistance = MVMatrix[3][3] - MVMatrix[3][1];
double nearDistance = MVMatrix[3][3] + MVMatrix[3][2];
// Normalize Planes
const double invLeftMag = 1.0 / glm::length(leftNormal);
leftNormal *= invLeftMag;
leftDistance *= invLeftMag;
const double invRightMag = 1.0 / glm::length(rightNormal);
rightNormal *= invRightMag;
rightDistance *= invRightMag;
const double invBottomMag = 1.0 / glm::length(bottomNormal);
bottomNormal *= invBottomMag;
bottomDistance *= invBottomMag;
const double invTopMag = 1.0 / glm::length(topNormal);
topNormal *= invTopMag;
topDistance *= invTopMag;
const double invNearMag = 1.0 / glm::length(nearNormal);
nearNormal *= invNearMag;
nearDistance *= invNearMag;
const double invFarMag = 1.0 / glm::length(farNormal);
farNormal *= invFarMag;
if (((glm::dot(leftNormal, position) + leftDistance) < -radius) ||
((glm::dot(rightNormal, position) + rightDistance) < -radius) ||
((glm::dot(bottomNormal, position) + bottomDistance) < -radius) ||
((glm::dot(topNormal, position) + topDistance) < -radius) ||
((glm::dot(nearNormal, position) + nearDistance) < -radius))
// The far plane testing is disabled because the atm has no depth.
{
return false;
}
return true;
}
GLuint createTexture(const glm::ivec2& size, std::string_view name) {
GLuint t;
glGenTextures(1, &t);
glBindTexture(GL_TEXTURE_2D, t);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Stopped using a buffer object for GL_PIXEL_UNPACK_BUFFER
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGB32F,
size.x,
size.y,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
if (glbinding::Binding::ObjectLabel.isResolved()) {
glObjectLabel(GL_TEXTURE, t, static_cast<GLsizei>(name.size()), name.data());
}
return t;
}
GLuint createTexture(const glm::ivec3& size, std::string_view name, int components) {
ghoul_assert(components == 3 || components == 4, "Only 3-4 components supported");
GLuint t;
glGenTextures(1, &t);
glBindTexture(GL_TEXTURE_3D, t);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
// Stopped using a buffer object for GL_PIXEL_UNPACK_BUFFER
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(
GL_TEXTURE_3D,
0,
(components == 3) ? GL_RGB32F : GL_RGBA32F,
size.x,
size.y,
size.z,
0,
GL_RGB,
GL_FLOAT,
nullptr
);
if (glbinding::Binding::ObjectLabel.isResolved()) {
glObjectLabel(GL_TEXTURE, t, static_cast<GLsizei>(name.size()), name.data());
}
return t;
}
} // namespace
namespace openspace {
AtmosphereDeferredcaster::AtmosphereDeferredcaster(float textureScale,
std::vector<ShadowConfiguration> shadowConfigArray,
bool saveCalculatedTextures)
: _transmittanceTableSize(glm::ivec2(256 * textureScale, 64 * textureScale))
, _irradianceTableSize(glm::ivec2(64 * textureScale, 16 * textureScale))
, _deltaETableSize(glm::ivec2(64 * textureScale, 16 * textureScale))
, _muSSamples(static_cast<int>(32 * textureScale))
, _nuSamples(static_cast<int>(8 * textureScale))
, _muSamples(static_cast<int>(128 * textureScale))
, _rSamples(static_cast<int>(32 * textureScale))
, _textureSize(_muSSamples * _nuSamples, _muSamples, _rSamples)
, _shadowConfArray(std::move(shadowConfigArray))
, _saveCalculationTextures(saveCalculatedTextures)
{
std::memset(_uniformNameBuffer, '\0', sizeof(_uniformNameBuffer));
std::strcpy(_uniformNameBuffer, "shadowDataArray[");
_shadowDataArrayCache.reserve(_shadowConfArray.size());
}
void AtmosphereDeferredcaster::initialize() {
ZoneScoped;
_transmittanceTableTexture = createTexture(_transmittanceTableSize, "Transmittance");
_irradianceTableTexture = createTexture(_irradianceTableSize, "Irradiance");
_inScatteringTableTexture = createTexture(_textureSize, "InScattering", 4);
calculateAtmosphereParameters();
}
void AtmosphereDeferredcaster::deinitialize() {
ZoneScoped;
glDeleteTextures(1, &_transmittanceTableTexture);
glDeleteTextures(1, &_irradianceTableTexture);
glDeleteTextures(1, &_inScatteringTableTexture);
}
void AtmosphereDeferredcaster::update(const UpdateData&) {}
float AtmosphereDeferredcaster::eclipseShadow(glm::dvec3 position) {
// This code is copied from the atmosphere deferred fragment shader
// It is used to calculate the eclipse shadow
if (_shadowDataArrayCache.empty() || !_shadowDataArrayCache.front().isShadowing) {
return 1.f;
}
const ShadowRenderingStruct& shadow = _shadowDataArrayCache.front();
const glm::dvec3 positionToCaster = shadow.casterPositionVec - position;
const glm::dvec3 sourceToCaster = shadow.sourceCasterVec; // Normalized
const glm::dvec3 casterShadow = dot(positionToCaster, sourceToCaster) * sourceToCaster;
const glm::dvec3 positionToShadow = positionToCaster - casterShadow;
float distanceToShadow = static_cast<float>(length(positionToShadow));
double shadowLength = length(casterShadow);
float radiusPenumbra = static_cast<float>(
shadow.radiusCaster * (shadowLength + shadow.penumbra) / shadow.penumbra
);
float radiusUmbra = static_cast<float>(
shadow.radiusCaster * (shadow.umbra - shadowLength) / shadow.umbra
);
// Is the position in the umbra - the fully shaded part
if (distanceToShadow < radiusUmbra) {
if (_hardShadowsEnabled) {
return 0.5f;
}
else {
// Smooth the shadow with the butterworth function
return sqrt(radiusUmbra / (radiusUmbra + pow(distanceToShadow, 4.f)));
}
}
else if (distanceToShadow < radiusPenumbra) { // In penumbra - partially shaded part
return _hardShadowsEnabled ? 0.5f : distanceToShadow / radiusPenumbra;
}
else {
return 1.f;
}
}
void AtmosphereDeferredcaster::preRaycast(const RenderData& data, const DeferredcastData&,
ghoul::opengl::ProgramObject& prg)
{
ZoneScoped;
// Atmosphere Frustum Culling
glm::dvec3 tPlanetPos = glm::dvec3(_modelTransform * glm::dvec4(0.0, 0.0, 0.0, 1.0));
const double distance = glm::distance(tPlanetPos, data.camera.eyePositionVec3());
// Radius is in KM
const double scaledRadius = glm::length(
glm::dmat3(_modelTransform) * glm::dvec3(KM_TO_M * _atmosphereRadius, 0.0, 0.0)
);
// Number of planet radii to use as distance threshold for culling
prg.setUniform(_uniformCache.cullAtmosphere, 1);
constexpr double DistanceCullingRadii = 5000;
glm::dmat4 MV = glm::dmat4(data.camera.sgctInternal.projectionMatrix()) *
data.camera.combinedViewMatrix();
if (distance <= scaledRadius * DistanceCullingRadii &&
isAtmosphereInFrustum(MV, tPlanetPos, scaledRadius + ATM_EPS))
{
prg.setUniform(_uniformCache.cullAtmosphere, 0);
prg.setUniform(_uniformCache.opacity, _opacity);
prg.setUniform(_uniformCache.Rg, _atmospherePlanetRadius);
prg.setUniform(_uniformCache.Rt, _atmosphereRadius);
prg.setUniform(_uniformCache.groundRadianceEmission, _groundRadianceEmission);
prg.setUniform(_uniformCache.HR, _rayleighHeightScale);
prg.setUniform(_uniformCache.betaRayleigh, _rayleighScatteringCoeff);
prg.setUniform(_uniformCache.HM, _mieHeightScale);
prg.setUniform(_uniformCache.betaMieExtinction, _mieExtinctionCoeff);
prg.setUniform(_uniformCache.mieG, _miePhaseConstant);
prg.setUniform(_uniformCache.sunRadiance, _sunRadianceIntensity);
prg.setUniform(_uniformCache.ozoneLayerEnabled, _ozoneEnabled);
prg.setUniform(_uniformCache.HO, _ozoneHeightScale);
prg.setUniform(_uniformCache.betaOzoneExtinction, _ozoneExtinctionCoeff);
prg.setUniform(_uniformCache.SAMPLES_R, _rSamples);
prg.setUniform(_uniformCache.SAMPLES_MU, _muSamples);
prg.setUniform(_uniformCache.SAMPLES_MU_S, _muSSamples);
prg.setUniform(_uniformCache.SAMPLES_NU, _nuSamples);
// We expose the value as degrees, but the shader wants radians
prg.setUniform(_uniformCache.sunAngularSize, glm::radians(_sunAngularSize));
// Object Space
glm::dmat4 invModelMatrix = glm::inverse(_modelTransform);
prg.setUniform(_uniformCache.inverseModelTransformMatrix, invModelMatrix);
prg.setUniform(_uniformCache.modelTransformMatrix, _modelTransform);
glm::dmat4 viewToWorldMatrix = glm::inverse(data.camera.combinedViewMatrix());
// Eye Space to World Space
prg.setUniform(_uniformCache.viewToWorldMatrix, viewToWorldMatrix);
// Projection to Eye Space
glm::dmat4 dInvProj = glm::inverse(glm::dmat4(data.camera.projectionMatrix()));
glm::dmat4 invWholePipeline = invModelMatrix * viewToWorldMatrix * dInvProj;
prg.setUniform(_uniformCache.projectionToModelTransform, invWholePipeline);
glm::dvec4 camPosObjCoords =
invModelMatrix * glm::dvec4(data.camera.eyePositionVec3(), 1.0);
prg.setUniform(_uniformCache.camPosObj, glm::dvec3(camPosObjCoords));
SceneGraphNode* node = sceneGraph()->sceneGraphNode("Sun");
glm::dvec3 sunPosWorld = node ? node->worldPosition() : glm::dvec3(0.0);
glm::dvec3 sunPosObj;
// Sun following camera position
if (_sunFollowingCameraEnabled) {
sunPosObj = invModelMatrix * glm::dvec4(data.camera.eyePositionVec3(), 1.0);
}
else {
sunPosObj = invModelMatrix *
glm::dvec4((sunPosWorld - data.modelTransform.translation) * 1000.0, 1.0);
}
// Sun Position in Object Space
prg.setUniform(_uniformCache.sunDirectionObj, glm::normalize(sunPosObj));
// Shadow calculations..
_shadowDataArrayCache.clear();
for (ShadowConfiguration& shadowConf : _shadowConfArray) {
// TO REMEMBER: all distances and lengths in world coordinates are in
// meters!!! We need to move this to view space...
double lt;
glm::dvec3 sourcePos = SpiceManager::ref().targetPosition(
shadowConf.source.first,
"SSB",
"GALACTIC",
{},
data.time.j2000Seconds(),
lt
);
sourcePos *= KM_TO_M; // converting to meters
glm::dvec3 casterPos = SpiceManager::ref().targetPosition(
shadowConf.caster.first,
"SSB",
"GALACTIC",
{},
data.time.j2000Seconds(),
lt
);
casterPos *= KM_TO_M; // converting to meters
SceneGraphNode* sourceNode = sceneGraphNode(shadowConf.source.first);
if (!sourceNode) {
if (!shadowConf.printedSourceError) {
LERROR("Invalid scenegraph node for the shadow's receiver");
shadowConf.printedSourceError = true;
}
return;
}
SceneGraphNode* casterNode = sceneGraphNode(shadowConf.caster.first);
if (!casterNode) {
if (!shadowConf.printedCasterError) {
LERROR("Invalid scenegraph node for the shadow's caster");
shadowConf.printedCasterError = true;
}
return;
}
double sourceScale = std::max(glm::compMax(sourceNode->scale()), 1.0);
double casterScale = std::max(glm::compMax(casterNode->scale()), 1.0);
double actualSourceRadius = shadowConf.source.second * sourceScale;
double actualCasterRadius = shadowConf.caster.second * casterScale;
// First we determine if the caster is shadowing the current planet
// (all calculations in World Coordinates):
glm::dvec3 planetCasterVec = casterPos - data.modelTransform.translation;
glm::dvec3 sourceCasterVec = casterPos - sourcePos;
double scLength = glm::length(sourceCasterVec);
glm::dvec3 planetCasterProj =
(glm::dot(planetCasterVec, sourceCasterVec) / (scLength * scLength)) *
sourceCasterVec;
double dTest = glm::length(planetCasterVec - planetCasterProj);
double xpTest = actualCasterRadius * scLength /
(actualSourceRadius + actualCasterRadius);
double rpTest = actualCasterRadius *
(glm::length(planetCasterProj) + xpTest) / xpTest;
double casterDistSun = glm::length(casterPos - sunPosWorld);
double planetDistSun = glm::length(
data.modelTransform.translation - sunPosWorld
);
ShadowRenderingStruct shadow;
shadow.isShadowing = false;
if (((dTest - rpTest) < (_atmospherePlanetRadius * KM_TO_M)) &&
(casterDistSun < planetDistSun))
{
// The current caster is shadowing the current planet
shadow.isShadowing = true;
shadow.radiusSource = actualSourceRadius;
shadow.radiusCaster = actualCasterRadius;
shadow.sourceCasterVec = glm::normalize(sourceCasterVec);
shadow.penumbra = xpTest;
shadow.umbra = shadow.radiusCaster * scLength / (shadow.radiusSource - shadow.radiusCaster);
shadow.casterPositionVec = casterPos;
}
_shadowDataArrayCache.push_back(shadow);
}
// _uniformNameBuffer[0..15] = "shadowDataArray["
unsigned int counter = 0;
for (const ShadowRenderingStruct& sd : _shadowDataArrayCache) {
// Add the counter
char* bf = fmt::format_to(_uniformNameBuffer + 16, "{}", counter);
std::strcpy(bf, "].isShadowing\0");
prg.setUniform(_uniformNameBuffer, sd.isShadowing);
if (sd.isShadowing) {
std::strcpy(bf, "].xp\0");
prg.setUniform(_uniformNameBuffer, sd.penumbra);
std::strcpy(bf, "].xu\0");
prg.setUniform(_uniformNameBuffer, sd.umbra);
std::strcpy(bf, "].rc\0");
prg.setUniform(_uniformNameBuffer, sd.radiusCaster);
std::strcpy(bf, "].sourceCasterVec\0");
prg.setUniform(_uniformNameBuffer, sd.sourceCasterVec);
std::strcpy(bf, "].casterPositionVec\0");
prg.setUniform(_uniformNameBuffer, sd.casterPositionVec);
}
counter++;
}
prg.setUniform(_uniformCache.hardShadows, _hardShadowsEnabled);
}
_transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
prg.setUniform(_uniformCache.transmittanceTexture, _transmittanceTableTextureUnit);
_irradianceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _irradianceTableTexture);
prg.setUniform(_uniformCache.irradianceTexture, _irradianceTableTextureUnit);
_inScatteringTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _inScatteringTableTexture);
prg.setUniform(_uniformCache.inscatterTexture, _inScatteringTableTextureUnit);
}
void AtmosphereDeferredcaster::postRaycast(const RenderData&, const DeferredcastData&,
ghoul::opengl::ProgramObject&)
{
ZoneScoped;
// Deactivate the texture units
_transmittanceTableTextureUnit.deactivate();
_irradianceTableTextureUnit.deactivate();
_inScatteringTableTextureUnit.deactivate();
}
std::filesystem::path AtmosphereDeferredcaster::deferredcastFSPath() const {
return absPath("${MODULE_ATMOSPHERE}/shaders/atmosphere_deferred_fs.glsl");
}
std::filesystem::path AtmosphereDeferredcaster::deferredcastVSPath() const {
return absPath("${MODULE_ATMOSPHERE}/shaders/atmosphere_deferred_vs.glsl");
}
std::filesystem::path AtmosphereDeferredcaster::helperPath() const {
return ""; // no helper file
}
void AtmosphereDeferredcaster::initializeCachedVariables(
ghoul::opengl::ProgramObject& program)
{
ghoul::opengl::updateUniformLocations(program, _uniformCache, UniformNames);
}
void AtmosphereDeferredcaster::setModelTransform(glm::dmat4 transform) {
_modelTransform = std::move(transform);
}
void AtmosphereDeferredcaster::setOpacity(float opacity) {
_opacity = opacity;
}
void AtmosphereDeferredcaster::setParameters(float atmosphereRadius, float planetRadius,
float averageGroundReflectance,
float groundRadianceEmission,
float rayleighHeightScale, bool enableOzone,
float ozoneHeightScale, float mieHeightScale,
float miePhaseConstant, float sunRadiance,
glm::vec3 rayScatteringCoefficients,
glm::vec3 ozoneExtinctionCoefficients,
glm::vec3 mieScatteringCoefficients,
glm::vec3 mieExtinctionCoefficients,
bool sunFollowing, float sunAngularSize)
{
_atmosphereRadius = atmosphereRadius;
_atmospherePlanetRadius = planetRadius;
_averageGroundReflectance = averageGroundReflectance;
_groundRadianceEmission = groundRadianceEmission;
_rayleighHeightScale = rayleighHeightScale;
_ozoneEnabled = enableOzone;
_ozoneHeightScale = ozoneHeightScale;
_mieHeightScale = mieHeightScale;
_miePhaseConstant = miePhaseConstant;
_sunRadianceIntensity = sunRadiance;
_rayleighScatteringCoeff = std::move(rayScatteringCoefficients);
_ozoneExtinctionCoeff = std::move(ozoneExtinctionCoefficients);
_mieScatteringCoeff = std::move(mieScatteringCoefficients);
_mieExtinctionCoeff = std::move(mieExtinctionCoefficients);
_sunFollowingCameraEnabled = sunFollowing;
_sunAngularSize = sunAngularSize;
}
void AtmosphereDeferredcaster::setHardShadows(bool enabled) {
_hardShadowsEnabled = enabled;
}
void AtmosphereDeferredcaster::calculateTransmittance() {
ZoneScoped;
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_transmittanceTableTexture,
0
);
glViewport(0, 0, _transmittanceTableSize.x, _transmittanceTableSize.y);
using ProgramObject = ghoul::opengl::ProgramObject;
std::unique_ptr<ProgramObject> program = ProgramObject::Build(
"Transmittance Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/transmittance_calc_fs.glsl")
);
program->activate();
program->setUniform("Rg", _atmospherePlanetRadius);
program->setUniform("Rt", _atmosphereRadius);
program->setUniform("HR", _rayleighHeightScale);
program->setUniform("betaRayleigh", _rayleighScatteringCoeff);
program->setUniform("HM", _mieHeightScale);
program->setUniform("betaMieExtinction", _mieExtinctionCoeff);
program->setUniform("TRANSMITTANCE", _transmittanceTableSize);
program->setUniform("ozoneLayerEnabled", _ozoneEnabled);
program->setUniform("HO", _ozoneHeightScale);
program->setUniform("betaOzoneExtinction", _ozoneExtinctionCoeff);
constexpr float Black[] = { 0.f, 0.f, 0.f, 0.f };
glClearBufferfv(GL_COLOR, 0, Black);
glDrawArrays(GL_TRIANGLES, 0, 6);
if (_saveCalculationTextures) {
saveTextureFile("transmittance_texture.ppm", _transmittanceTableSize);
}
program->deactivate();
}
GLuint AtmosphereDeferredcaster::calculateDeltaE() {
ZoneScoped;
GLuint deltaE = createTexture(_deltaETableSize, "DeltaE");
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, deltaE, 0);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
using ProgramObject = ghoul::opengl::ProgramObject;
std::unique_ptr<ProgramObject> program = ProgramObject::Build(
"Irradiance Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/irradiance_calc_fs.glsl")
);
program->activate();
ghoul::opengl::TextureUnit unit;
unit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
program->setUniform("transmittanceTexture", unit);
program->setUniform("Rg", _atmospherePlanetRadius);
program->setUniform("Rt", _atmosphereRadius);
program->setUniform("OTHER_TEXTURES", _deltaETableSize);
glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLES, 0, 6);
if (_saveCalculationTextures) {
saveTextureFile("deltaE_table_texture.ppm", _deltaETableSize);
}
program->deactivate();
return deltaE;
}
std::pair<GLuint, GLuint> AtmosphereDeferredcaster::calculateDeltaS() {
ZoneScoped;
GLuint deltaSRayleigh = createTexture(_textureSize, "DeltaS Rayleigh", 3);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, deltaSRayleigh, 0);
GLuint deltaSMie = createTexture(_textureSize, "DeltaS Mie", 3);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, deltaSMie, 0);
GLenum colorBuffers[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, colorBuffers);
glViewport(0, 0, _textureSize.x, _textureSize.y);
using ProgramObject = ghoul::opengl::ProgramObject;
std::unique_ptr<ProgramObject> program = ProgramObject::Build(
"InScattering Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/inScattering_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
program->activate();
ghoul::opengl::TextureUnit unit;
unit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
program->setUniform("transmittanceTexture", unit);
program->setUniform("Rg", _atmospherePlanetRadius);
program->setUniform("Rt", _atmosphereRadius);
program->setUniform("HR", _rayleighHeightScale);
program->setUniform("betaRayleigh", _rayleighScatteringCoeff);
program->setUniform("HM", _mieHeightScale);
program->setUniform("betaMieScattering", _mieScatteringCoeff);
program->setUniform("SAMPLES_MU_S", _muSSamples);
program->setUniform("SAMPLES_NU", _nuSamples);
program->setUniform("SAMPLES_MU", _muSamples);
program->setUniform("ozoneLayerEnabled", _ozoneEnabled);
program->setUniform("HO", _ozoneHeightScale);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < _rSamples; ++layer) {
program->setUniform("layer", layer);
step3DTexture(*program, layer);
glDrawArrays(GL_TRIANGLES, 0, 6);
}
if (_saveCalculationTextures) {
saveTextureFile("deltaS_rayleigh_texture.ppm", glm::ivec2(_textureSize));
saveTextureFile<GL_COLOR_ATTACHMENT1>(
"deltaS_mie_texture.ppm",
glm::ivec2(_textureSize)
);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, 0, 0);
GLenum drawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, drawBuffers);
program->deactivate();
return { deltaSRayleigh, deltaSMie };
}
void AtmosphereDeferredcaster::calculateIrradiance() {
ZoneScoped;
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_irradianceTableTexture,
0
);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
using ProgramObject = ghoul::opengl::ProgramObject;
std::unique_ptr<ProgramObject> program = ProgramObject::Build(
"DeltaE Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaE_calc_fs.glsl")
);
program->activate();
glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLES, 0, 6);
if (_saveCalculationTextures) {
saveTextureFile("irradiance_texture.ppm", _deltaETableSize);
}
program->deactivate();
}
void AtmosphereDeferredcaster::calculateInscattering(GLuint deltaSRayleigh,
GLuint deltaSMie)
{
ZoneScoped;
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_inScatteringTableTexture,
0
);
glViewport(0, 0, _textureSize.x, _textureSize.y);
using ProgramObject = ghoul::opengl::ProgramObject;
std::unique_ptr<ProgramObject> program = ProgramObject::Build(
"deltaSCalcProgram",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaS_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
program->activate();
ghoul::opengl::TextureUnit deltaSRayleighUnit;
deltaSRayleighUnit.activate();
glBindTexture(GL_TEXTURE_3D, deltaSRayleigh);
program->setUniform("deltaSRTexture", deltaSRayleighUnit);
ghoul::opengl::TextureUnit deltaSMieUnit;
deltaSMieUnit.activate();
glBindTexture(GL_TEXTURE_3D, deltaSMie);
program->setUniform("deltaSMTexture", deltaSMieUnit);
program->setUniform("SAMPLES_MU_S", _muSSamples);
program->setUniform("SAMPLES_NU", _nuSamples);
program->setUniform("SAMPLES_MU", _muSamples);
program->setUniform("SAMPLES_R", _rSamples);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < _rSamples; ++layer) {
program->setUniform("layer", layer);
glDrawArrays(GL_TRIANGLES, 0, 6);
}
if (_saveCalculationTextures) {
saveTextureFile("S_texture.ppm", glm::ivec2(_textureSize));
}
program->deactivate();
}
void AtmosphereDeferredcaster::calculateDeltaJ(int scatteringOrder,
ghoul::opengl::ProgramObject& program,
GLuint deltaJ, GLuint deltaE,
GLuint deltaSRayleigh, GLuint deltaSMie)
{
ZoneScoped;
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, deltaJ, 0);
glViewport(0, 0, _textureSize.x, _textureSize.y);
program.activate();
ghoul::opengl::TextureUnit transmittanceUnit;
transmittanceUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
program.setUniform("transmittanceTexture", transmittanceUnit);
ghoul::opengl::TextureUnit deltaEUnit;
deltaEUnit.activate();
glBindTexture(GL_TEXTURE_2D, deltaE);
program.setUniform("deltaETexture", deltaEUnit);
ghoul::opengl::TextureUnit deltaSRayleighUnit;
deltaSRayleighUnit.activate();
glBindTexture(GL_TEXTURE_3D, deltaSRayleigh);
program.setUniform("deltaSRTexture", deltaSRayleighUnit);
ghoul::opengl::TextureUnit deltaSMieUnit;
deltaSMieUnit.activate();
glBindTexture(GL_TEXTURE_3D, deltaSMie);
program.setUniform("deltaSMTexture", deltaSMieUnit);
program.setUniform("firstIteration", (scatteringOrder == 2) ? 1 : 0);
program.setUniform("Rg", _atmospherePlanetRadius);
program.setUniform("Rt", _atmosphereRadius);
program.setUniform("AverageGroundReflectance", _averageGroundReflectance);
program.setUniform("HR", _rayleighHeightScale);
program.setUniform("betaRayleigh", _rayleighScatteringCoeff);
program.setUniform("HM", _mieHeightScale);
program.setUniform("betaMieScattering", _mieScatteringCoeff);
program.setUniform("mieG", _miePhaseConstant);
program.setUniform("SAMPLES_MU_S", _muSSamples);
program.setUniform("SAMPLES_NU", _nuSamples);
program.setUniform("SAMPLES_MU", _muSamples);
program.setUniform("SAMPLES_R", _rSamples);
for (int layer = 0; layer < _rSamples; ++layer) {
program.setUniform("layer", layer);
step3DTexture(program, layer);
glDrawArrays(GL_TRIANGLES, 0, 6);
}
if (_saveCalculationTextures) {
saveTextureFile(
fmt::format("deltaJ_texture-scattering_order-{}.ppm", scatteringOrder),
glm::ivec2(_textureSize)
);
}
program.deactivate();
}
void AtmosphereDeferredcaster::calculateDeltaE(int scatteringOrder,
ghoul::opengl::ProgramObject& program,
GLuint deltaE, GLuint deltaSRayleigh,
GLuint deltaSMie)
{
ZoneScoped;
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, deltaE, 0);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
program.activate();
ghoul::opengl::TextureUnit deltaSRayleighUnit;
deltaSRayleighUnit.activate();
glBindTexture(GL_TEXTURE_3D, deltaSRayleigh);
program.setUniform("deltaSRTexture", deltaSRayleighUnit);
ghoul::opengl::TextureUnit deltaSMieUnit;
deltaSMieUnit.activate();
glBindTexture(GL_TEXTURE_3D, deltaSMie);
program.setUniform("deltaSMTexture", deltaSMieUnit);
program.setUniform("firstIteration", (scatteringOrder == 2) ? 1 : 0);
program.setUniform("Rg", _atmospherePlanetRadius);
program.setUniform("Rt", _atmosphereRadius);
program.setUniform("mieG", _miePhaseConstant);
program.setUniform("SKY", _irradianceTableSize);
program.setUniform("SAMPLES_MU_S", _muSSamples);
program.setUniform("SAMPLES_NU", _nuSamples);
program.setUniform("SAMPLES_MU", _muSamples);
program.setUniform("SAMPLES_R", _rSamples);
glDrawArrays(GL_TRIANGLES, 0, 6);
if (_saveCalculationTextures) {
saveTextureFile(
fmt::format("deltaE_texture-scattering_order-{}.ppm", scatteringOrder),
_deltaETableSize
);
}
program.deactivate();
}
void AtmosphereDeferredcaster::calculateDeltaS(int scatteringOrder,
ghoul::opengl::ProgramObject& program,
GLuint deltaSRayleigh, GLuint deltaJ)
{
ZoneScoped;
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, deltaSRayleigh, 0);
glViewport(0, 0, _textureSize.x, _textureSize.y);
program.activate();
ghoul::opengl::TextureUnit transmittanceUnit;
transmittanceUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
program.setUniform("transmittanceTexture", transmittanceUnit);
ghoul::opengl::TextureUnit deltaJUnit;
deltaJUnit.activate();
glBindTexture(GL_TEXTURE_3D, deltaJ);
program.setUniform("deltaJTexture", deltaJUnit);
program.setUniform("Rg", _atmospherePlanetRadius);
program.setUniform("Rt", _atmosphereRadius);
program.setUniform("SAMPLES_MU_S", _muSSamples);
program.setUniform("SAMPLES_NU", _nuSamples);
program.setUniform("SAMPLES_MU", _muSamples);
program.setUniform("SAMPLES_R", _rSamples);
for (int layer = 0; layer < _rSamples; ++layer) {
program.setUniform("layer", layer);
step3DTexture(program, layer);
glDrawArrays(GL_TRIANGLES, 0, 6);
}
if (_saveCalculationTextures) {
saveTextureFile(
fmt::format("deltaS_texture-scattering_order-{}.ppm", scatteringOrder),
glm::ivec2(_textureSize)
);
}
program.deactivate();
}
void AtmosphereDeferredcaster::calculateIrradiance(int scatteringOrder,
ghoul::opengl::ProgramObject& program,
GLuint deltaE)
{
ZoneScoped;
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_irradianceTableTexture,
0
);
glViewport(0, 0, _deltaETableSize.x, _deltaETableSize.y);
program.activate();
ghoul::opengl::TextureUnit unit;
unit.activate();
glBindTexture(GL_TEXTURE_2D, deltaE);
program.setUniform("deltaETexture", unit);
program.setUniform("OTHER_TEXTURES", _deltaETableSize);
glDrawArrays(GL_TRIANGLES, 0, 6);
if (_saveCalculationTextures) {
saveTextureFile(
fmt::format("irradianceTable_order-{}.ppm", scatteringOrder),
_deltaETableSize
);
}
program.deactivate();
}
void AtmosphereDeferredcaster::calculateInscattering(int scatteringOrder,
ghoul::opengl::ProgramObject& prg,
GLuint deltaSRayleigh)
{
ZoneScoped;
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
_inScatteringTableTexture,
0
);
glViewport(0, 0, _textureSize.x, _textureSize.y);
prg.activate();
ghoul::opengl::TextureUnit unit;
unit.activate();
glBindTexture(GL_TEXTURE_3D, deltaSRayleigh);
prg.setUniform("deltaSTexture", unit);
prg.setUniform("SAMPLES_MU_S", _muSSamples);
prg.setUniform("SAMPLES_NU", _nuSamples);
prg.setUniform("SAMPLES_MU", _muSamples);
prg.setUniform("SAMPLES_R", _rSamples);
for (int layer = 0; layer < _rSamples; ++layer) {
prg.setUniform("layer", layer);
glDrawArrays(GL_TRIANGLES, 0, 6);
}
if (_saveCalculationTextures) {
saveTextureFile(
fmt::format("inscatteringTable_order-{}.ppm", scatteringOrder),
glm::ivec2(_textureSize)
);
}
prg.deactivate();
}
void AtmosphereDeferredcaster::calculateAtmosphereParameters() {
ZoneScoped;
using ProgramObject = ghoul::opengl::ProgramObject;
std::unique_ptr<ProgramObject> deltaJProgram = ProgramObject::Build(
"DeltaJ Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
std::unique_ptr<ProgramObject> irradianceSupTermsProgram = ProgramObject::Build(
"IrradianceSupTerms Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/irradiance_sup_calc_fs.glsl")
);
std::unique_ptr<ProgramObject> inScatteringSupTermsProgram = ProgramObject::Build(
"InScatteringSupTerms Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
std::unique_ptr<ProgramObject> irradianceFinalProgram = ProgramObject::Build(
"IrradianceEFinal Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/irradiance_final_fs.glsl")
);
std::unique_ptr<ProgramObject> deltaSSupTermsProgram = ProgramObject::Build(
"DeltaSSUPTerms Program",
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_vs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_fs.glsl"),
absPath("${MODULE_ATMOSPHERE}/shaders/calculation_gs.glsl")
);
// Saves current FBO first
GLint defaultFBO;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO);
GLint viewport[4];
global::renderEngine->openglStateCache().viewport(viewport);
// Creates the FBO for the calculations
GLuint calcFBO;
glGenFramebuffers(1, &calcFBO);
glBindFramebuffer(GL_FRAMEBUFFER, calcFBO);
GLenum drawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, drawBuffers);
// Prepare for rendering/calculations
GLuint quadVao;
glGenVertexArrays(1, &quadVao);
glBindVertexArray(quadVao);
GLuint quadVbo;
glGenBuffers(1, &quadVbo);
glBindBuffer(GL_ARRAY_BUFFER, quadVbo);
const GLfloat VertexData[] = {
// x y z
-1.f, -1.f,
1.f, 1.f,
-1.f, 1.f,
-1.f, -1.f,
1.f, -1.f,
1.f, 1.f,
};
glBufferData(GL_ARRAY_BUFFER, sizeof(VertexData), VertexData, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat), nullptr);
// Execute Calculations
LDEBUG("Starting precalculations for scattering effects");
glDisable(GL_BLEND);
// See Precomputed Atmosphere Scattering from Bruneton et al. paper, algorithm 4.1:
calculateTransmittance();
// line 2 in algorithm 4.1
GLuint deltaETable = calculateDeltaE();
// line 3 in algorithm 4.1
auto [deltaSRayleighTable, deltaSMieTable] = calculateDeltaS();
// line 4 in algorithm 4.1
calculateIrradiance();
// line 5 in algorithm 4.1
calculateInscattering(deltaSRayleighTable, deltaSMieTable);
GLuint deltaJTable = createTexture(_textureSize, "DeltaJ", 3);
// loop in line 6 in algorithm 4.1
for (int scatteringOrder = 2; scatteringOrder <= 4; ++scatteringOrder) {
// line 7 in algorithm 4.1
calculateDeltaJ(
scatteringOrder,
*deltaJProgram,
deltaJTable,
deltaETable,
deltaSRayleighTable,
deltaSMieTable
);
// line 8 in algorithm 4.1
calculateDeltaE(
scatteringOrder,
*irradianceSupTermsProgram,
deltaETable,
deltaSRayleighTable,
deltaSMieTable
);
// line 9 in algorithm 4.1
calculateDeltaS(
scatteringOrder,
*inScatteringSupTermsProgram,
deltaSRayleighTable,
deltaJTable
);
glEnable(GL_BLEND);
glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
glBlendFuncSeparate(GL_ONE, GL_ONE, GL_ONE, GL_ONE);
// line 10 in algorithm 4.1
calculateIrradiance(
scatteringOrder,
*irradianceFinalProgram,
deltaETable
);
// line 11 in algorithm 4.1
calculateInscattering(
scatteringOrder,
*deltaSSupTermsProgram,
deltaSRayleighTable
);
glDisable(GL_BLEND);
}
// Restores OpenGL blending state
global::renderEngine->openglStateCache().resetBlendState();
glDeleteTextures(1, &deltaETable);
glDeleteTextures(1, &deltaSRayleighTable);
glDeleteTextures(1, &deltaSMieTable);
glDeleteTextures(1, &deltaJTable);
// Restores system state
glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO);
global::renderEngine->openglStateCache().setViewportState(viewport);
glDeleteBuffers(1, &quadVbo);
glDeleteVertexArrays(1, &quadVao);
glDeleteFramebuffers(1, &calcFBO);
glBindVertexArray(0);
LDEBUG("Ended precalculations for Atmosphere effects");
}
void AtmosphereDeferredcaster::step3DTexture(ghoul::opengl::ProgramObject& prg, int layer)
{
// See OpenGL redbook 8th Edition page 556 for Layered Rendering
const float planet2 = _atmospherePlanetRadius * _atmospherePlanetRadius;
const float diff = _atmosphereRadius * _atmosphereRadius - planet2;
const float ri = static_cast<float>(layer) / static_cast<float>(_rSamples - 1);
float eps = 0.01f;
if (layer > 0) {
if (layer == (_rSamples - 1)) {
eps = -0.001f;
}
else {
eps = 0.f;
}
}
const float r = std::sqrt(planet2 + ri * ri * diff) + eps;
const float dminG = r - _atmospherePlanetRadius;
const float dminT = _atmosphereRadius - r;
const float dh = std::sqrt(r * r - planet2);
const float dH = dh + std::sqrt(diff);
prg.setUniform("r", r);
prg.setUniform("dhdH", dminT, dH, dminG, dh);
}
} // namespace openspace