Files
OpenSpace/modules/atmosphere/rendering/renderableatmosphere.cpp
2017-07-24 17:07:49 -04:00

844 lines
42 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2017 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/atmosphere/rendering/renderableatmosphere.h>
#include <openspace/documentation/documentation.h>
#include <openspace/documentation/verifier.h>
#include <modules/space/rendering/planetgeometry.h>
#include <openspace/util/time.h>
#include <openspace/util/spicemanager.h>
#include <openspace/scene/scenegraphnode.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/misc/assert.h>
#include <ghoul/io/texture/texturereader.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/texture.h>
#include <ghoul/opengl/textureunit.h>
#include <ghoul/misc/invariants.h>
#include <openspace/rendering/deferredcastermanager.h>
#include <modules/atmosphere/rendering/atmospheredeferredcaster.h>
#include <openspace/engine/configurationmanager.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/rendering/renderengine.h>
#include <memory>
#include <fstream>
#define _USE_MATH_DEFINES
#include <math.h>
namespace {
const char* KeyGeometry = "Geometry";
const char* KeyRadius = "Radius";
static const char* _loggerCat = "RenderableAtmosphere";
const char* keyFrame = "Frame";
const char* keyShadowGroup = "Shadow_Group";
const char* keyShadowSource = "Source";
const char* keyShadowCaster = "Caster";
const char* keyBody = "Body";
const char* keyAtmosphere = "Atmosphere";
const char* keyAtmosphereType = "Type";
const char* keyAtmosphereRadius = "AtmosphereRadius";
const char* keyPlanetRadius = "PlanetRadius";
const char* keyAverageGroundReflectance = "PlanetAverageGroundReflectance";
const char* keyRayleigh = "Rayleigh";
const char* keyRayleighHeightScale = "H_R";
const char* keyOzone = "Ozone";
const char* keyOzoneHeightScale = "H_O";
const char* keyMie = "Mie";
const char* keyMieHeightScale = "H_M";
const char* keyMiePhaseConstant = "G";
const char* keyImage = "Image";
const char* keyToneMappingOp = "ToneMapping";
const char* keyExposure = "Exposure";
const char* keyBackground = "Background";
const char* keyGamma = "Gamma";
const char* keyATMDebug = "Debug";
const char* keyTextureScale = "PreCalculatedTextureScale";
const char* keySaveTextures = "SaveCalculatedTextures";
} // namespace
namespace openspace {
documentation::Documentation RenderableAtmosphere::Documentation() {
using namespace documentation;
return {
"RenderableAtmosphere",
"atmosphere_renderable_atmosphere",
{
/*
{
KeyGeometry,
new ReferencingVerifier("space_geometry_planet"),
"Specifies the planet geometry that is used for this RenderableAtmosphere.",
Optional::No
},
{
KeyRadius,
new DoubleVerifier,
"Specifies the radius of the planet. If this value is not specified, it "
"will try to query the SPICE library for radius values.",
Optional::Yes
},
{
KeyShading,
new BoolVerifier,
"Specifies whether the atmosphere should be rendered shaded by the Sun. If "
"this value is 'false', any existing night texture will not be used. "
"This value defaults to 'true'.",
Optional::Yes
}
*/
}
};
}
RenderableAtmosphere::RenderableAtmosphere(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
// TODO: Enable the shading program later to test spherical atmosphere (JCC)
//, _programObject(nullptr)
// TODO: Enable the geometry later to test spherical atmosphere (JCC)
//, _geometry(nullptr)
, _atmosphereHeightP("atmmosphereHeight", "Atmosphere Height (KM)", 60.0f, 0.1f, 99.0f)
, _groundAverageReflectanceP("averageGroundReflectance", "Average Ground Reflectance (%)", 0.1f, 0.0f, 1.0f)
, _rayleighHeightScaleP("rayleighHeightScale", "Rayleigh Height Scale (KM)", 8.0f, 0.1f, 20.0f)
, _rayleighScatteringCoeffXP("rayleighScatteringCoeffX", "Rayleigh Scattering Coeff X (x10e-3)", 1.0f, 0.01f, 100.0f)
, _rayleighScatteringCoeffYP("rayleighScatteringCoeffY", "Rayleigh Scattering Coeff Y (x10e-3)", 1.0f, 0.01f, 100.0f)
, _rayleighScatteringCoeffZP("rayleighScatteringCoeffZ", "Rayleigh Scattering Coeff Z (x10e-3)", 1.0f, 0.01f, 100.0f)
, _ozoneEnabledP("ozone", "Ozone Layer Enabled", true)
, _ozoneHeightScaleP("ozoneLayerHeightScale", "Ozone Height Scale (KM)", 8.0f, 0.1f, 20.0f)
, _ozoneCoeffXP("ozoneLayerCoeffX", "Ozone Layer Extinction Coeff X (x10e-5)", 3.426f, 0.01f, 100.0f)
, _ozoneCoeffYP("ozoneLayerCoeffY", "Ozone Layer Extinction Coeff Y (x10e-5)", 8.298f, 0.01f, 100.0f)
, _ozoneCoeffZP("ozoneLayerCoeffZ", "Ozone Layer Extinction Coeff Z (x10e-5)", 0.356f, 0.01f, 100.0f)
, _mieHeightScaleP("mieHeightScale", "Mie Height Scale (KM)", 1.2f, 0.1f, 20.0f)
, _mieScatteringCoeffXP("mieScatteringCoeffX", "Mie Scattering Coeff X (x10e-3)", 4.0f, 0.01f, 1000.0f)
, _mieScatteringCoeffYP("mieScatteringCoeffY", "Mie Scattering Coeff Y (x10e-3)", 4.0f, 0.01f, 1000.0f)
, _mieScatteringCoeffZP("mieScatteringCoeffZ", "Mie Scattering Coeff Z (x10e-3)", 4.0f, 0.01f, 1000.0f)
, _mieScatteringExtinctionPropCoefficientP("mieScatteringExtinctionPropCoefficient",
"Mie Scattering/Extinction Proportion Coefficient (%)", 0.9f, 0.01f, 1.0f)
, _mieAsymmetricFactorGP("mieAsymmetricFactorG", "Mie Asymmetric Factor G", 0.85f, -1.0f, 1.0f)
, _sunIntensityP("sunIntensity", "Sun Intensity", 50.0f, 0.1f, 1000.0f)
, _hdrExpositionP("hdrExposition", "HDR", 0.4f, 0.01f, 5.0f)
, _backgroundExposureP("backgroundExposition", "Background Exposition", 1.8f, 0.01f, 10.0f)
, _gammaConstantP("gamma", "Gamma Correction", 1.8f, 0.1f, 3.0f)
, _atmosphereEnabled(false)
, _ozoneLayerEnabled(false)
, _atmosphereRadius(0.f)
, _atmospherePlanetRadius(0.f)
, _planetAverageGroundReflectance(0.f)
, _rayleighHeightScale(0.f)
, _ozoneHeightScale(0.f)
, _mieHeightScale(0.f)
, _miePhaseConstant(0.f)
, _sunRadianceIntensity(50.f)
, _hdrConstant(0.f)
, _exposureBackgroundConstant(1.8f)
, _gammaConstant(1.8f)
, _mieExtinctionCoeff(glm::vec3(0.f))
, _rayleighScatteringCoeff(glm::vec3(0.f))
, _ozoneExtinctionCoeff(glm::vec3(0.f))
, _mieScatteringCoeff(glm::vec3(0.f))
, _saveCalculationsToTexture(false)
, _preCalculatedTexturesScale(1.0)
//, _planetRadius(0.f)
, _shadowEnabled(false)
, _time(0.f)
{
ghoul_precondition(
dictionary.hasKeyAndValue<std::string>(SceneGraphNode::KeyName),
"RenderableAtmosphere needs the name to be specified"
);
documentation::testSpecificationAndThrow(
Documentation(),
dictionary,
"RenderableAtmosphere"
);
const std::string name = dictionary.value<std::string>(SceneGraphNode::KeyName);
// TODO: Enable the geometry later to test spherical atmosphere (JCC)
/*
ghoul::Dictionary geomDict = dictionary.value<ghoul::Dictionary>(KeyGeometry);
if (dictionary.hasKey(KeyRadius)) {
// If the user specified a radius, we want to use this
_planetRadius = static_cast<float>(dictionary.value<double>(KeyRadius));
}
else if (SpiceManager::ref().hasValue(name, "RADII")) {
// If the user didn't specfify a radius, but Spice has a radius, we can use this
glm::dvec3 radius;
SpiceManager::ref().getValue(name, "RADII", radius);
radius *= 1000.0; // Spice gives radii in KM.
std::swap(radius[1], radius[2]); // z is equivalent to y in our coordinate system
geomDict.setValue(KeyRadius, radius);
_planetRadius = static_cast<float>((radius.x + radius.y + radius.z) / 3.0);
}
else {
LERRORC("RenderableAtmosphere", "Missing radius specification");
}
_geometry = planetgeometry::PlanetGeometry::createFromDictionary(geomDict);
addPropertySubOwner(_geometry.get());
*/
//================================================================
//======== Reads Shadow (Eclipses) Entries in mod file ===========
//================================================================
ghoul::Dictionary shadowDictionary;
bool success = dictionary.getValue(keyShadowGroup, shadowDictionary);
bool disableShadows = false;
if (success) {
std::vector< std::pair<std::string, float > > sourceArray;
unsigned int sourceCounter = 1;
while (success) {
std::string sourceName;
std::stringstream ss;
ss << keyShadowSource << sourceCounter << ".Name";
success = shadowDictionary.getValue(ss.str(), sourceName);
if (success) {
float sourceRadius;
ss.str(std::string());
ss << keyShadowSource << sourceCounter << ".Radius";
success = shadowDictionary.getValue(ss.str(), sourceRadius);
if (success) {
sourceArray.push_back(std::pair< std::string, float>(
sourceName, sourceRadius));
}
else {
LWARNING("No Radius value expecified for Shadow Source Name "
<< sourceName << " from " << name
<< " planet.\nDisabling shadows for this planet.");
disableShadows = true;
break;
}
}
sourceCounter++;
}
if (!disableShadows && !sourceArray.empty()) {
success = true;
std::vector< std::pair<std::string, float > > casterArray;
unsigned int casterCounter = 1;
while (success) {
std::string casterName;
std::stringstream ss;
ss << keyShadowCaster << casterCounter << ".Name";
success = shadowDictionary.getValue(ss.str(), casterName);
if (success) {
float casterRadius;
ss.str(std::string());
ss << keyShadowCaster << casterCounter << ".Radius";
success = shadowDictionary.getValue(ss.str(), casterRadius);
if (success) {
casterArray.push_back(std::pair< std::string, float>(
casterName, casterRadius));
}
else {
LWARNING("No Radius value expecified for Shadow Caster Name "
<< casterName << " from " << name
<< " planet.\nDisabling shadows for this planet.");
disableShadows = true;
break;
}
}
casterCounter++;
}
if (!disableShadows && (!sourceArray.empty() && !casterArray.empty())) {
for (const auto & source : sourceArray)
for (const auto & caster : casterArray) {
ShadowConf sc;
sc.source = source;
sc.caster = caster;
_shadowConfArray.push_back(sc);
}
_shadowEnabled = true;
}
}
}
//================================================================
//========== Reads Atmosphere Entries from mod file ==============
//================================================================
bool errorReadingAtmosphereData = false;
ghoul::Dictionary atmosphereDictionary;
success = dictionary.getValue(keyAtmosphere, atmosphereDictionary);
if (success) {
std::string atmTypeString;
if (!atmosphereDictionary.getValue(keyAtmosphereType, atmTypeString)) {
errorReadingAtmosphereData = true;
LWARNING("No Atmosphere Type value expecified for Atmosphere Effects " << name
<< " planet. Types allowed: RenderableGlobe or RenderablePlanet.\nDisabling atmosphere effects for this planet.");
}
else {
if (atmTypeString.compare("RenderableGlobe") == 0) {
_atmosphereType = AtmosphereDeferredcaster::RenderableGlobe;
}
else if (atmTypeString.compare("RenderablePlanet") == 0)
{
_atmosphereType = AtmosphereDeferredcaster::RenderablePlanet;
}
else
{
errorReadingAtmosphereData = true;
LWARNING("Wrong atmosphere type specified for " << name
<< " planet. Types allowed: RenderableGlobe or RenderablePlanet.\nDisabling atmosphere effects for this planet.");
}
}
if (!atmosphereDictionary.getValue(keyAtmosphereRadius, _atmosphereRadius)) {
errorReadingAtmosphereData = true;
LWARNING("No Atmosphere Radius value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!atmosphereDictionary.getValue(keyPlanetRadius, _atmospherePlanetRadius)) {
errorReadingAtmosphereData = true;
LWARNING("No Planet Radius value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!atmosphereDictionary.getValue(keyAverageGroundReflectance, _planetAverageGroundReflectance)) {
errorReadingAtmosphereData = true;
LWARNING("No Average Atmosphere Ground Reflectance value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
ghoul::Dictionary rayleighDictionary;
success = atmosphereDictionary.getValue(keyRayleigh, rayleighDictionary);
if (success) {
// Not using right now.
glm::vec3 rayleighWavelengths;
success = rayleighDictionary.getValue("Coefficients.Wavelengths", rayleighWavelengths);
if (!rayleighDictionary.getValue("Coefficients.Scattering", _rayleighScatteringCoeff)) {
errorReadingAtmosphereData = true;
LWARNING("No Rayleigh Scattering parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!rayleighDictionary.getValue(keyRayleighHeightScale, _rayleighHeightScale)) {
errorReadingAtmosphereData = true;
LWARNING("No Rayleigh Height Scale value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
}
else {
errorReadingAtmosphereData = true;
LWARNING("No Rayleigh parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
ghoul::Dictionary ozoneDictionary;
success = atmosphereDictionary.getValue(keyOzone, ozoneDictionary);
if (success) {
_ozoneLayerEnabled = true;
if (!ozoneDictionary.getValue(keyOzoneHeightScale, _ozoneHeightScale)) {
_ozoneLayerEnabled = false;
}
if (!ozoneDictionary.getValue("Coefficients.Extinction", _ozoneExtinctionCoeff)) {
_ozoneLayerEnabled = false;
}
}
else {
_ozoneLayerEnabled = false;
}
ghoul::Dictionary mieDictionary;
success = atmosphereDictionary.getValue(keyMie, mieDictionary);
if (success) {
if (!mieDictionary.getValue(keyMieHeightScale, _mieHeightScale)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Height Scale value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!mieDictionary.getValue("Coefficients.Scattering", _mieScatteringCoeff)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Scattering parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!mieDictionary.getValue("Coefficients.Extinction", _mieExtinctionCoeff)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Extinction parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
if (!mieDictionary.getValue(keyMiePhaseConstant, _miePhaseConstant)) {
errorReadingAtmosphereData = true;
LWARNING("No Mie Phase Constant value expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
}
else {
errorReadingAtmosphereData = true;
LWARNING("No Mie parameters expecified for Atmosphere Effects of "
<< name << " planet.\nDisabling atmosphere effects for this planet.");
}
ghoul::Dictionary ImageDictionary;
success = atmosphereDictionary.getValue(keyImage, ImageDictionary);
if (success) {
if (ImageDictionary.getValue(keyToneMappingOp, _preCalculatedTexturesScale)) {
LDEBUG("Atmosphere Texture Scaled to " << _preCalculatedTexturesScale);
}
if (ImageDictionary.getValue(keyExposure, _hdrConstant)) {
LDEBUG("Saving Precalculated Atmosphere Textures.");
}
if (ImageDictionary.getValue(keyGamma, _gammaConstant)) {
LDEBUG("Saving Precalculated Atmosphere Textures.");
}
}
ghoul::Dictionary debugDictionary;
success = atmosphereDictionary.getValue(keyATMDebug, debugDictionary);
if (success) {
if (debugDictionary.getValue(keyTextureScale, _preCalculatedTexturesScale)) {
LDEBUG("Atmosphere Texture Scaled to " << _preCalculatedTexturesScale);
}
if (debugDictionary.getValue(keySaveTextures, _saveCalculationsToTexture)) {
LDEBUG("Saving Precalculated Atmosphere Textures.");
}
}
if (!errorReadingAtmosphereData) {
_atmosphereEnabled = true;
//========================================================
//============== Atmosphere Properties ===================
//========================================================
_atmosphereHeightP.set(_atmosphereRadius - _atmospherePlanetRadius);
_atmosphereHeightP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_atmosphereHeightP);
_groundAverageReflectanceP.set(_planetAverageGroundReflectance);
_groundAverageReflectanceP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_groundAverageReflectanceP);
_rayleighHeightScaleP.set(_rayleighHeightScale);
_rayleighHeightScaleP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_rayleighHeightScaleP);
_rayleighScatteringCoeffXP.set(_rayleighScatteringCoeff.x * 1000.0f);
_rayleighScatteringCoeffXP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_rayleighScatteringCoeffXP);
_rayleighScatteringCoeffYP.set(_rayleighScatteringCoeff.y * 1000.0f);
_rayleighScatteringCoeffYP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_rayleighScatteringCoeffYP);
_rayleighScatteringCoeffZP.set(_rayleighScatteringCoeff.z * 1000.0f);
_rayleighScatteringCoeffZP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_rayleighScatteringCoeffZP);
_ozoneEnabledP.set(_ozoneLayerEnabled);
_ozoneEnabledP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_ozoneEnabledP);
_ozoneHeightScaleP.set(_ozoneHeightScale);
_ozoneHeightScaleP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_ozoneHeightScaleP);
_ozoneCoeffXP.set(_ozoneExtinctionCoeff.x * 100000.0f);
_ozoneCoeffXP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_ozoneCoeffXP);
_ozoneCoeffYP.set(_ozoneExtinctionCoeff.y * 100000.0f);
_ozoneCoeffYP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_ozoneCoeffYP);
_ozoneCoeffZP.set(_ozoneExtinctionCoeff.z * 100000.0f);
_ozoneCoeffZP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_ozoneCoeffZP);
_mieHeightScaleP.set(_mieHeightScale);
_mieHeightScaleP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieHeightScaleP);
_mieScatteringCoeffXP.set(_mieScatteringCoeff.x * 1000.0f);
_mieScatteringCoeffXP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieScatteringCoeffXP);
_mieScatteringCoeffYP.set(_mieScatteringCoeff.y * 1000.0f);
_mieScatteringCoeffYP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieScatteringCoeffYP);
_mieScatteringCoeffZP.set(_mieScatteringCoeff.z * 1000.0f);
_mieScatteringCoeffZP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieScatteringCoeffZP);
_mieScatteringExtinctionPropCoefficientP.set(_mieScatteringCoeff.x / _mieExtinctionCoeff.x);
_mieScatteringExtinctionPropCoefficientP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieScatteringExtinctionPropCoefficientP);
_mieAsymmetricFactorGP.set(_miePhaseConstant);
_mieAsymmetricFactorGP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_mieAsymmetricFactorGP);
_sunIntensityP.set(_sunRadianceIntensity);
_sunIntensityP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_sunIntensityP);
_hdrExpositionP.set(_hdrConstant);
_hdrExpositionP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_hdrExpositionP);
_backgroundExposureP.set(_exposureBackgroundConstant);
_backgroundExposureP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_backgroundExposureP);
_gammaConstantP.set(_gammaConstant);
_gammaConstantP.onChange(std::bind(&RenderableAtmosphere::updateAtmosphereParameters, this));
addProperty(_gammaConstantP);
}
}
}
bool RenderableAtmosphere::initialize() {
RenderEngine& renderEngine = OsEng.renderEngine();
// TODO: Enable the shading program later to test spherical atmosphere (JCC)
/*
if (_programObject == nullptr ) {
// TODO: Change for the right shading program (JCC)
_programObject = renderEngine.buildRenderProgram(
"shadowNightProgram",
"${MODULE_ATMOSPHERE}/shaders/shadow_nighttexture_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/shadow_nighttexture_fs.glsl");
}
using IgnoreError = ghoul::opengl::ProgramObject::IgnoreError;
_programObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_programObject->setIgnoreUniformLocationError(IgnoreError::Yes);
// Deactivate any previously activated shader program.
_programObject->deactivate();
*/
// TODO: Enable the geometry later to test spherical atmosphere (JCC)
//_geometry->initialize(this);
if (_atmosphereEnabled) {
_deferredcaster = std::make_unique<AtmosphereDeferredcaster>();
if (_deferredcaster) {
_deferredcaster->setAtmosphereRadius(_atmosphereRadius);
_deferredcaster->setPlanetRadius(_atmospherePlanetRadius);
_deferredcaster->setPlanetAverageGroundReflectance(_planetAverageGroundReflectance);
_deferredcaster->setRayleighHeightScale(_rayleighHeightScale);
_deferredcaster->enableOzone(_ozoneLayerEnabled);
_deferredcaster->setOzoneHeightScale(_ozoneHeightScale);
_deferredcaster->setMieHeightScale(_mieHeightScale);
_deferredcaster->setMiePhaseConstant(_miePhaseConstant);
_deferredcaster->setSunRadianceIntensity(_sunRadianceIntensity);
_deferredcaster->setHDRConstant(_hdrConstant);
_deferredcaster->setBackgroundConstant(_exposureBackgroundConstant);
_deferredcaster->setGammaConstant(_gammaConstant);
_deferredcaster->setRayleighScatteringCoefficients(_rayleighScatteringCoeff);
_deferredcaster->setOzoneExtinctionCoefficients(_ozoneExtinctionCoeff);
_deferredcaster->setMieScatteringCoefficients(_mieScatteringCoeff);
_deferredcaster->setMieExtinctionCoefficients(_mieExtinctionCoeff);
// TODO: Fix the ellipsoid nature of the renderable globe (JCC)
//_deferredcaster->setEllipsoidRadii(_ellipsoid.radii());
_deferredcaster->setRenderableClass(_atmosphereType);
_deferredcaster->setPrecalculationTextureScale(_preCalculatedTexturesScale);
if (_saveCalculationsToTexture)
_deferredcaster->enablePrecalculationTexturesSaving();
_deferredcaster->initialize();
}
OsEng.renderEngine().deferredcasterManager().attachDeferredcaster(*_deferredcaster.get());
std::function<void(bool)> onChange = [&](bool enabled) {
if (enabled) {
OsEng.renderEngine().deferredcasterManager().attachDeferredcaster(*_deferredcaster.get());
}
else {
OsEng.renderEngine().deferredcasterManager().detachDeferredcaster(*_deferredcaster.get());
}
};
onEnabledChange(onChange);
}
return isReady();
}
bool RenderableAtmosphere::deinitialize() {
// TODO: Enable the geometry later to test spherical atmosphere (JCC)
/*
if (_geometry) {
_geometry->deinitialize();
}
_geometry = nullptr;
*/
RenderEngine& renderEngine = OsEng.renderEngine();
// TODO: Enable the shading program later to test spherical atmosphere (JCC)
/*
if (_programObject) {
renderEngine.removeRenderProgram(_programObject);
}
_programObject = nullptr;
*/
if (_deferredcaster) {
OsEng.renderEngine().deferredcasterManager().detachDeferredcaster(*_deferredcaster.get());
_deferredcaster = nullptr;
}
return true;
}
bool RenderableAtmosphere::isReady() const {
bool ready = true;
// TODO: Enable the shading program later to test spherical atmosphere (JCC)
//ready &= (_programObject != nullptr);
// TODO: Enable the geometry later to test spherical atmosphere (JCC)
//ready &= (_geometry != nullptr);
ready &= (_deferredcaster != nullptr);
return ready;
}
void RenderableAtmosphere::computeModelTransformMatrix(const openspace::TransformData & transformData,
glm::dmat4 * modelTransform) {
// scale the planet to appropriate size since the planet is a unit sphere
*modelTransform =
glm::translate(glm::dmat4(1.0), transformData.translation) * // Translation
glm::dmat4(transformData.rotation) * // Spice rotation
glm::dmat4(glm::scale(glm::dmat4(1.0), glm::dvec3(transformData.scale)));
}
void RenderableAtmosphere::render(const RenderData& data, RendererTasks& renderTask) {
// TODO: Enable the shading program later to test spherical atmosphere (JCC)
/*
_programObject->activate();
glm::dmat4 modelTransform = glm::dmat4(1.0);
computeModelTransformMatrix(data.modelTransform, &modelTransform);
glm::dmat4 modelViewTransform = data.camera.combinedViewMatrix() * modelTransform;
_programObject->setUniform("transparency", _alpha);
_programObject->setUniform("modelViewTransform", modelViewTransform);
_programObject->setUniform("modelViewProjectionTransform",
data.camera.sgctInternal.projectionMatrix() * glm::mat4(modelViewTransform)
);
_programObject->setUniform("ModelTransform", glm::mat4(modelTransform));
setPscUniforms(*_programObject.get(), data.camera, data.position);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
//=============================================================================
//============= Eclipse Shadow Calculations and Uniforms Loading ==============
//=============================================================================
// TODO: Move Calculations to VIEW SPACE (let's avoid precision problems...)
double lt;
if (!_shadowConfArray.empty()) {
std::vector<ShadowRenderingStruct> shadowDataArray;
shadowDataArray.reserve(_shadowConfArray.size());
for (const auto & shadowConf : _shadowConfArray) {
// TO REMEMBER: all distances and lengths in world coordinates are in meters!!! We need to move this to view space...
// Getting source and caster:
glm::dvec3 sourcePos = SpiceManager::ref().targetPosition(shadowConf.source.first, "SUN", "GALACTIC", {}, _time, lt);
sourcePos *= 1000.0; // converting to meters
glm::dvec3 casterPos = SpiceManager::ref().targetPosition(shadowConf.caster.first, "SUN", "GALACTIC", {}, _time, lt);
casterPos *= 1000.0; // converting to meters
psc caster_pos = PowerScaledCoordinate::CreatePowerScaledCoordinate(casterPos.x, casterPos.y, casterPos.z);
// First we determine if the caster is shadowing the current planet (all calculations in World Coordinates):
glm::vec3 planetCasterVec = (caster_pos - data.position).vec3();
glm::vec3 sourceCasterVec = glm::vec3(casterPos - sourcePos);
float sc_length = glm::length(sourceCasterVec);
glm::vec3 planetCaster_proj = (glm::dot(planetCasterVec, sourceCasterVec) / (sc_length*sc_length)) * sourceCasterVec;
float d_test = glm::length(planetCasterVec - planetCaster_proj);
float xp_test = shadowConf.caster.second * sc_length / (shadowConf.source.second + shadowConf.caster.second);
float rp_test = shadowConf.caster.second * (glm::length(planetCaster_proj) + xp_test) / xp_test;
double casterDistSun = glm::length(casterPos);
float planetDistSun = glm::length(data.position.vec3());
ShadowRenderingStruct shadowData;
shadowData.isShadowing = false;
if (((d_test - rp_test) < _planetRadius) &&
(casterDistSun < planetDistSun)) {
// The current caster is shadowing the current planet
shadowData.isShadowing = true;
shadowData.rs = shadowConf.source.second;
shadowData.rc = shadowConf.caster.second;
shadowData.sourceCasterVec = sourceCasterVec;
shadowData.xp = xp_test;
shadowData.xu = shadowData.rc * sc_length / (shadowData.rs - shadowData.rc);
shadowData.casterPositionVec = glm::vec3(casterPos);
}
shadowDataArray.push_back(shadowData);
}
const std::string uniformVarName("shadowDataArray[");
unsigned int counter = 0;
for (const auto & sd : shadowDataArray) {
std::stringstream ss;
ss << uniformVarName << counter << "].isShadowing";
_programObject->setUniform(ss.str(), sd.isShadowing);
if (sd.isShadowing) {
ss.str(std::string());
ss << uniformVarName << counter << "].xp";
_programObject->setUniform(ss.str(), sd.xp);
ss.str(std::string());
ss << uniformVarName << counter << "].xu";
_programObject->setUniform(ss.str(), sd.xu);
//ss.str(std::string());
//ss << uniformVarName << counter << "].rs";
//_programObject->setUniform(ss.str(), sd.rs);
ss.str(std::string());
ss << uniformVarName << counter << "].rc";
_programObject->setUniform(ss.str(), sd.rc);
ss.str(std::string());
ss << uniformVarName << counter << "].sourceCasterVec";
_programObject->setUniform(ss.str(), sd.sourceCasterVec);
ss.str(std::string());
ss << uniformVarName << counter << "].casterPositionVec";
_programObject->setUniform(ss.str(), sd.casterPositionVec);
}
counter++;
}
}
// render
_geometry->render();
// disable shader
_programObject->deactivate();
*/
if (_atmosphereEnabled) {
DeferredcasterTask task{ _deferredcaster.get(), data };
renderTask.deferredcasterTasks.push_back(task);
}
}
void RenderableAtmosphere::update(const UpdateData& data) {
_stateMatrix = data.modelTransform.rotation;
_time = data.time.j2000Seconds();
// TODO: Enable the shading program later to test spherical atmosphere (JCC)
/*
if (_programObject && _programObject->isDirty())
_programObject->rebuildFromFile();
*/
if (_deferredcaster) {
_deferredcaster->setTime(data.time.j2000Seconds());
glm::dmat4 modelTransform;
computeModelTransformMatrix(data.modelTransform, &modelTransform);
if (_atmosphereType == AtmosphereDeferredcaster::RenderablePlanet) {
//earth needs to be rotated
glm::dmat4 rot = glm::rotate(glm::dmat4(1.0), M_PI_2, glm::dvec3(1, 0, 0));
glm::dmat4 roty = glm::rotate(glm::dmat4(1.0), M_PI_2, glm::dvec3(0, -1, 0));
modelTransform = modelTransform * rot * roty;
}
_deferredcaster->setModelTransform(modelTransform);
}
}
void RenderableAtmosphere::updateAtmosphereParameters() {
bool executeComputation = true;
if (_sunRadianceIntensity != _sunIntensityP ||
_hdrConstant != _hdrExpositionP ||
_exposureBackgroundConstant != _backgroundExposureP ||
_gammaConstant != _gammaConstantP)
executeComputation = false;
_atmosphereRadius = _atmospherePlanetRadius + _atmosphereHeightP;
_planetAverageGroundReflectance = _groundAverageReflectanceP;
_rayleighHeightScale = _rayleighHeightScaleP;
_rayleighScatteringCoeff = glm::vec3(_rayleighScatteringCoeffXP * 0.001f, _rayleighScatteringCoeffYP * 0.001f,
_rayleighScatteringCoeffZP * 0.001f);
_ozoneLayerEnabled = _ozoneEnabledP.value();
_ozoneHeightScale = _ozoneHeightScaleP.value();
_ozoneExtinctionCoeff = glm::vec3(_ozoneCoeffXP.value() * 0.00001f,
_ozoneCoeffYP.value() * 0.00001f,
_ozoneCoeffZP.value() * 0.00001f);
_mieHeightScale = _mieHeightScaleP;
_mieScatteringCoeff = glm::vec3(_mieScatteringCoeffXP * 0.001f, _mieScatteringCoeffYP * 0.001f,
_mieScatteringCoeffZP * 0.001f);
_mieExtinctionCoeff = _mieScatteringCoeff * (1.0f / static_cast<float>(_mieScatteringExtinctionPropCoefficientP));
_miePhaseConstant = _mieAsymmetricFactorGP;
_sunRadianceIntensity = _sunIntensityP;
_hdrConstant = _hdrExpositionP;
_exposureBackgroundConstant = _backgroundExposureP;
_gammaConstant = _gammaConstantP.value();
if (_deferredcaster) {
_deferredcaster->setAtmosphereRadius(_atmosphereRadius);
_deferredcaster->setPlanetRadius(_atmospherePlanetRadius);
_deferredcaster->setPlanetAverageGroundReflectance(_planetAverageGroundReflectance);
_deferredcaster->setRayleighHeightScale(_rayleighHeightScale);
_deferredcaster->enableOzone(_ozoneLayerEnabled);
_deferredcaster->setOzoneHeightScale(_ozoneHeightScale);
_deferredcaster->setMieHeightScale(_mieHeightScale);
_deferredcaster->setMiePhaseConstant(_miePhaseConstant);
_deferredcaster->setSunRadianceIntensity(_sunRadianceIntensity);
_deferredcaster->setHDRConstant(_hdrConstant);
_deferredcaster->setBackgroundConstant(_exposureBackgroundConstant);
_deferredcaster->setGammaConstant(_gammaConstant);
_deferredcaster->setRayleighScatteringCoefficients(_rayleighScatteringCoeff);
_deferredcaster->setOzoneExtinctionCoefficients(_ozoneExtinctionCoeff);
_deferredcaster->setMieScatteringCoefficients(_mieScatteringCoeff);
_deferredcaster->setMieExtinctionCoefficients(_mieExtinctionCoeff);
_deferredcaster->setRenderableClass(AtmosphereDeferredcaster::RenderablePlanet);
if (executeComputation)
_deferredcaster->preCalculateAtmosphereParam();
}
}
} // namespace openspace