Files
OpenSpace/modules/space/rendering/renderablestars.cpp
2018-04-20 19:00:00 -04:00

852 lines
29 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2018 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/space/rendering/renderablestars.h>
#include <openspace/documentation/documentation.h>
#include <openspace/documentation/verifier.h>
#include <openspace/util/updatestructures.h>
#include <openspace/util/distanceconstants.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/rendering/renderengine.h>
#include <ghoul/filesystem/cachemanager.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/misc/templatefactory.h>
#include <ghoul/io/texture/texturereader.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/texture.h>
#include <ghoul/opengl/textureunit.h>
#include <array>
#include <fstream>
#include <stdint.h>
#include <limits>
//#define USING_STELLAR_TEST_GRID
namespace {
constexpr const char* _loggerCat = "RenderableStars";
constexpr const char* KeyFile = "File";
constexpr int8_t CurrentCacheVersion = 1;
struct ColorVBOLayout {
std::array<float, 4> position; // (x,y,z,e)
float bvColor; // B-V color value
float luminance;
float absoluteMagnitude;
};
struct VelocityVBOLayout {
std::array<float, 4> position; // (x,y,z,e)
float bvColor; // B-V color value
float luminance;
float absoluteMagnitude;
float vx; // v_x
float vy; // v_y
float vz; // v_z
};
struct SpeedVBOLayout {
std::array<float, 4> position; // (x,y,z,e)
float bvColor; // B-V color value
float luminance;
float absoluteMagnitude;
float speed;
};
static const openspace::properties::Property::PropertyInfo PsfTextureInfo = {
"Texture",
"Point Spread Function Texture",
"The path to the texture that should be used as a point spread function for the "
"stars."
};
static const openspace::properties::Property::PropertyInfo ColorTextureInfo = {
"ColorMap",
"ColorBV Texture",
"The path to the texture that is used to convert from the B-V value of the star "
"to its color. The texture is used as a one dimensional lookup function."
};
static const openspace::properties::Property::PropertyInfo ColorOptionInfo = {
"ColorOption",
"Color Option",
"This value determines which quantity is used for determining the color of the "
"stars."
};
static const openspace::properties::Property::PropertyInfo MagnitudeExponentInfo = {
"MagnitudeExponent",
"MagnitudeExponent",
"Adjust star magnitude by 10^MagnitudeExponent. "
"Stars closer than this distance are given full opacity. "
"Farther away, stars dim proportionally to the logarithm of their distance."
};
static const openspace::properties::Property::PropertyInfo SharpnessInfo = {
"Sharpness",
"Sharpness",
"Adjust star sharpness"
};
static const openspace::properties::Property::PropertyInfo BillboardSizeInfo = {
"BillboardSize",
"Billboard Size",
"Set the billboard size of all stars"
};
} // namespace
namespace openspace {
documentation::Documentation RenderableStars::Documentation() {
using namespace documentation;
return {
"RenderableStars",
"space_renderablestars",
{
{
"Type",
new StringEqualVerifier("RenderableStars"),
Optional::No
},
{
KeyFile,
new StringVerifier,
Optional::No,
"The path to the SPECK file that contains information about the stars "
"being rendered."
},
{
PsfTextureInfo.identifier,
new StringVerifier,
Optional::No,
PsfTextureInfo.description
},
{
ColorTextureInfo.identifier,
new StringVerifier,
Optional::No,
ColorTextureInfo.description
},
{
ColorOptionInfo.identifier,
new StringInListVerifier({
"Color", "Velocity", "Speed"
}),
Optional::Yes,
ColorOptionInfo.description
},
{
MagnitudeExponentInfo.identifier,
new DoubleVerifier,
Optional::Yes,
MagnitudeExponentInfo.description
},
{
SharpnessInfo.identifier,
new DoubleVerifier,
Optional::Yes,
SharpnessInfo.description
},
{
BillboardSizeInfo.identifier,
new DoubleVerifier,
Optional::Yes,
BillboardSizeInfo.description
}
}
};
}
RenderableStars::RenderableStars(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _pointSpreadFunctionTexturePath(PsfTextureInfo)
, _pointSpreadFunctionTexture(nullptr)
, _pointSpreadFunctionTextureIsDirty(true)
, _colorTexturePath(ColorTextureInfo)
, _colorTexture(nullptr)
, _colorTextureIsDirty(true)
, _colorOption(ColorOptionInfo, properties::OptionProperty::DisplayType::Dropdown)
, _dataIsDirty(true)
, _magnitudeExponent(MagnitudeExponentInfo, 19.f, 0.f, 30.f)
, _sharpness(SharpnessInfo, 1.f, 0.f, 5.f)
, _billboardSize(BillboardSizeInfo, 30.f, 1.f, 100.f)
, _program(nullptr)
, _speckFile("")
, _nValuesPerStar(0)
, _vao(0)
, _vbo(0)
{
using File = ghoul::filesystem::File;
documentation::testSpecificationAndThrow(
Documentation(),
dictionary,
"RenderableStars"
);
_pointSpreadFunctionTexturePath = absPath(dictionary.value<std::string>(
PsfTextureInfo.identifier
));
_pointSpreadFunctionFile = std::make_unique<File>(_pointSpreadFunctionTexturePath);
_colorTexturePath = absPath(dictionary.value<std::string>(
ColorTextureInfo.identifier
));
_colorTextureFile = std::make_unique<File>(_colorTexturePath);
_speckFile = absPath(dictionary.value<std::string>(KeyFile));
_colorOption.addOptions({
{ ColorOption::Color, "Color" },
{ ColorOption::Velocity, "Velocity" },
{ ColorOption::Speed, "Speed" }
});
if (dictionary.hasKey(ColorOptionInfo.identifier)) {
const std::string colorOption = dictionary.value<std::string>(
ColorOptionInfo.identifier
);
if (colorOption == "Color") {
_colorOption = ColorOption::Color;
}
else if (colorOption == "Velocity") {
_colorOption = ColorOption::Velocity;
}
else {
_colorOption = ColorOption::Speed;
}
}
_colorOption.onChange([&] { _dataIsDirty = true; });
addProperty(_colorOption);
_pointSpreadFunctionTexturePath.onChange(
[&]{ _pointSpreadFunctionTextureIsDirty = true; }
);
_pointSpreadFunctionFile->setCallback(
[&](const File&) { _pointSpreadFunctionTextureIsDirty = true; }
);
addProperty(_pointSpreadFunctionTexturePath);
_colorTexturePath.onChange([&]{ _colorTextureIsDirty = true; });
_colorTextureFile->setCallback(
[&](const File&) { _colorTextureIsDirty = true; }
);
addProperty(_colorTexturePath);
if (dictionary.hasKey(MagnitudeExponentInfo.identifier)) {
_magnitudeExponent = static_cast<float>(
dictionary.value<double>(MagnitudeExponentInfo.identifier)
);
}
addProperty(_magnitudeExponent);
if (dictionary.hasKey(SharpnessInfo.identifier)) {
_sharpness = static_cast<float>(
dictionary.value<double>(SharpnessInfo.identifier)
);
}
addProperty(_sharpness);
if (dictionary.hasKey(BillboardSizeInfo.identifier)) {
_billboardSize = static_cast<float>(
dictionary.value<double>(BillboardSizeInfo.identifier)
);
}
addProperty(_billboardSize);
}
RenderableStars::~RenderableStars() {}
bool RenderableStars::isReady() const {
return (_program != nullptr) && (!_fullData.empty());
}
void RenderableStars::initializeGL() {
RenderEngine& renderEngine = OsEng.renderEngine();
_program = renderEngine.buildRenderProgram("Star",
absPath("${MODULE_SPACE}/shaders/star_vs.glsl"),
absPath("${MODULE_SPACE}/shaders/star_fs.glsl"),
absPath("${MODULE_SPACE}/shaders/star_ge.glsl")
);
_uniformCache.model = _program->uniformLocation("model");
_uniformCache.view = _program->uniformLocation("view");
_uniformCache.viewScaling = _program->uniformLocation("viewScaling");
_uniformCache.projection = _program->uniformLocation("projection");
_uniformCache.colorOption = _program->uniformLocation("colorOption");
_uniformCache.magnitudeExponent = _program->uniformLocation("magnitudeExponent");
_uniformCache.sharpness = _program->uniformLocation("sharpness");
_uniformCache.billboardSize = _program->uniformLocation("billboardSize");
_uniformCache.screenSize = _program->uniformLocation("screenSize");
_uniformCache.psfTexture = _program->uniformLocation("psfTexture");
_uniformCache.colorTexture = _program->uniformLocation("colorTexture");
bool success = loadData();
if (!success) {
throw ghoul::RuntimeError("Error loading data");
}
}
void RenderableStars::deinitializeGL() {
glDeleteBuffers(1, &_vbo);
_vbo = 0;
glDeleteVertexArrays(1, &_vao);
_vao = 0;
_pointSpreadFunctionTexture = nullptr;
_colorTexture = nullptr;
RenderEngine& renderEngine = OsEng.renderEngine();
if (_program) {
renderEngine.removeRenderProgram(_program.get());
_program = nullptr;
}
}
void RenderableStars::render(const RenderData& data, RendererTasks&) {
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glDepthMask(false);
_program->activate();
glm::mat4 model =
glm::translate(glm::dmat4(1.0), data.modelTransform.translation) *
glm::dmat4(data.modelTransform.rotation) *
glm::dmat4(glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale)));
glm::mat4 view = data.camera.combinedViewMatrix();
glm::mat4 projection = data.camera.projectionMatrix();
float viewScaling = data.camera.scaling();
_program->setUniform(_uniformCache.model, model);
_program->setUniform(_uniformCache.view, view);
_program->setUniform(_uniformCache.projection, projection);
_program->setUniform(_uniformCache.viewScaling, viewScaling);
_program->setUniform(_uniformCache.colorOption, _colorOption);
_program->setUniform(_uniformCache.magnitudeExponent, _magnitudeExponent);
_program->setUniform(_uniformCache.sharpness, _sharpness);
_program->setUniform(_uniformCache.billboardSize, _billboardSize);
_program->setUniform(
_uniformCache.screenSize,
glm::vec2(OsEng.renderEngine().renderingResolution())
);
_program->setUniform("eyePosition", glm::vec3(data.camera.eyePositionVec3()));
ghoul::opengl::TextureUnit psfUnit;
psfUnit.activate();
_pointSpreadFunctionTexture->bind();
_program->setUniform(_uniformCache.psfTexture, psfUnit);
ghoul::opengl::TextureUnit colorUnit;
colorUnit.activate();
_colorTexture->bind();
_program->setUniform(_uniformCache.colorTexture, colorUnit);
glBindVertexArray(_vao);
const GLsizei nStars = static_cast<GLsizei>(_fullData.size() / _nValuesPerStar);
glDrawArrays(GL_POINTS, 0, nStars);
glBindVertexArray(0);
_program->deactivate();
glDepthMask(true);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
void RenderableStars::update(const UpdateData&) {
if (_dataIsDirty) {
const int value = _colorOption;
LDEBUG("Regenerating data");
createDataSlice(ColorOption(value));
int size = static_cast<int>(_slicedData.size());
if (_vao == 0) {
glGenVertexArrays(1, &_vao);
}
if (_vbo == 0) {
glGenBuffers(1, &_vbo);
}
glBindVertexArray(_vao);
glBindBuffer(GL_ARRAY_BUFFER, _vbo);
glBufferData(
GL_ARRAY_BUFFER,
size * sizeof(GLfloat),
&_slicedData[0],
GL_STATIC_DRAW
);
GLint positionAttrib = _program->attributeLocation("in_position");
GLint brightnessDataAttrib = _program->attributeLocation("in_brightness");
const size_t nStars = _fullData.size() / _nValuesPerStar;
const size_t nValues = _slicedData.size() / nStars;
GLsizei stride = static_cast<GLsizei>(sizeof(GLfloat) * nValues);
glEnableVertexAttribArray(positionAttrib);
glEnableVertexAttribArray(brightnessDataAttrib);
const int colorOption = _colorOption;
switch (colorOption) {
case ColorOption::Color:
glVertexAttribPointer(
positionAttrib,
4,
GL_FLOAT,
GL_FALSE,
stride,
nullptr // = offsetof(ColorVBOLayout, position)
);
glVertexAttribPointer(
brightnessDataAttrib,
3,
GL_FLOAT,
GL_FALSE,
stride,
reinterpret_cast<void*>(offsetof(ColorVBOLayout, bvColor))
);
break;
case ColorOption::Velocity:
{
glVertexAttribPointer(
positionAttrib,
4,
GL_FLOAT,
GL_FALSE,
stride,
nullptr // = offsetof(VelocityVBOLayout, position)
);
glVertexAttribPointer(
brightnessDataAttrib,
3,
GL_FLOAT,
GL_FALSE,
stride,
reinterpret_cast<void*>(offsetof(VelocityVBOLayout, bvColor))
);
GLint velocityAttrib = _program->attributeLocation("in_velocity");
glEnableVertexAttribArray(velocityAttrib);
glVertexAttribPointer(
velocityAttrib,
3,
GL_FLOAT,
GL_TRUE,
stride,
reinterpret_cast<void*>(offsetof(VelocityVBOLayout, vx))
);
break;
}
case ColorOption::Speed:
{
glVertexAttribPointer(
positionAttrib,
4,
GL_FLOAT,
GL_FALSE,
stride,
nullptr // = offsetof(SpeedVBOLayout, position)
);
glVertexAttribPointer(
brightnessDataAttrib,
3,
GL_FLOAT,
GL_FALSE,
stride,
reinterpret_cast<void*>(offsetof(SpeedVBOLayout, bvColor))
);
GLint speedAttrib = _program->attributeLocation("in_speed");
glEnableVertexAttribArray(speedAttrib);
glVertexAttribPointer(
speedAttrib,
1,
GL_FLOAT,
GL_TRUE,
stride,
reinterpret_cast<void*>(offsetof(SpeedVBOLayout, speed))
);
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
_dataIsDirty = false;
}
if (_pointSpreadFunctionTextureIsDirty) {
LDEBUG("Reloading Point Spread Function texture");
_pointSpreadFunctionTexture = nullptr;
if (_pointSpreadFunctionTexturePath.value() != "") {
_pointSpreadFunctionTexture = ghoul::io::TextureReader::ref().loadTexture(
absPath(_pointSpreadFunctionTexturePath)
);
if (_pointSpreadFunctionTexture) {
LDEBUG(fmt::format(
"Loaded texture from '{}'",
absPath(_pointSpreadFunctionTexturePath)
));
_pointSpreadFunctionTexture->uploadTexture();
}
_pointSpreadFunctionTexture->setFilter(
ghoul::opengl::Texture::FilterMode::AnisotropicMipMap
);
_pointSpreadFunctionFile = std::make_unique<ghoul::filesystem::File>(
_pointSpreadFunctionTexturePath
);
_pointSpreadFunctionFile->setCallback(
[&](const ghoul::filesystem::File&) {
_pointSpreadFunctionTextureIsDirty = true;
}
);
}
_pointSpreadFunctionTextureIsDirty = false;
}
if (_colorTextureIsDirty) {
LDEBUG("Reloading Color Texture");
_colorTexture = nullptr;
if (_colorTexturePath.value() != "") {
_colorTexture = ghoul::io::TextureReader::ref().loadTexture(
absPath(_colorTexturePath)
);
if (_colorTexture) {
LDEBUG(fmt::format(
"Loaded texture from '{}'",
absPath(_colorTexturePath)
));
_colorTexture->uploadTexture();
}
_colorTextureFile = std::make_unique<ghoul::filesystem::File>(
_colorTexturePath
);
_colorTextureFile->setCallback(
[&](const ghoul::filesystem::File&) { _colorTextureIsDirty = true; }
);
}
_colorTextureIsDirty = false;
}
if (_program->isDirty()) {
_program->rebuildFromFile();
_uniformCache.model = _program->uniformLocation("model");
_uniformCache.view = _program->uniformLocation("view");
_uniformCache.viewScaling = _program->uniformLocation("viewScaling");
_uniformCache.projection = _program->uniformLocation("projection");
_uniformCache.colorOption = _program->uniformLocation("colorOption");
_uniformCache.magnitudeExponent = _program->uniformLocation("magnitudeExponent");
_uniformCache.sharpness = _program->uniformLocation("sharpness");
_uniformCache.billboardSize = _program->uniformLocation("billboardSize");
_uniformCache.screenSize = _program->uniformLocation("screenSize");
_uniformCache.psfTexture = _program->uniformLocation("psfTexture");
_uniformCache.colorTexture = _program->uniformLocation("colorTexture");
}
}
bool RenderableStars::loadData() {
std::string _file = _speckFile;
std::string cachedFile = FileSys.cacheManager()->cachedFilename(
_file,
ghoul::filesystem::CacheManager::Persistent::Yes
);
bool hasCachedFile = FileSys.fileExists(cachedFile);
if (hasCachedFile) {
LINFO(fmt::format(
"Cached file '{}' used for Speck file '{}'",
cachedFile,
_file
));
bool success = loadCachedFile(cachedFile);
if (success) {
return true;
}
else {
FileSys.cacheManager()->removeCacheFile(_file);
// Intentional fall-through to the 'else' computation to generate the cache
// file for the next run
}
}
else {
LINFO(fmt::format("Cache for Speck file '{}' not found", _file));
}
LINFO(fmt::format("Loading Speck file '{}'", _file));
bool success = readSpeckFile();
if (!success) {
return false;
}
LINFO("Saving cache");
success = saveCachedFile(cachedFile);
return success;
}
bool RenderableStars::readSpeckFile() {
std::string _file = _speckFile;
std::ifstream file(_file);
if (!file.good()) {
LERROR(fmt::format("Failed to open Speck file '{}'", _file));
return false;
}
_nValuesPerStar = 0;
// The beginning of the speck file has a header that either contains comments
// (signaled by a preceding '#') or information about the structure of the file
// (signaled by the keywords 'datavar', 'texturevar', and 'texture')
std::string line = "";
while (true) {
std::streampos position = file.tellg();
std::getline(file, line);
if (line[0] == '#' || line.empty()) {
continue;
}
if (line.substr(0, 7) != "datavar" &&
line.substr(0, 10) != "texturevar" &&
line.substr(0, 7) != "texture")
{
// we read a line that doesn't belong to the header, so we have to jump back
// before the beginning of the current line
file.seekg(position);
break;
}
if (line.substr(0, 7) == "datavar") {
// datavar lines are structured as follows:
// datavar # description
// where # is the index of the data variable; so if we repeatedly overwrite
// the 'nValues' variable with the latest index, we will end up with the total
// number of values (+3 since X Y Z are not counted in the Speck file index)
std::stringstream str(line);
std::string dummy;
str >> dummy;
str >> _nValuesPerStar;
_nValuesPerStar += 1; // We want the number, but the index is 0 based
}
}
_nValuesPerStar += 3; // X Y Z are not counted in the Speck file indices
float minLumValue = std::numeric_limits<float>::max();
float maxLumValue = std::numeric_limits<float>::min();
do {
std::vector<float> values(_nValuesPerStar);
std::getline(file, line);
std::stringstream str(line);
for (int i = 0; i < _nValuesPerStar; ++i) {
str >> values[i];
}
bool nullArray = true;
for (size_t i = 0; i < values.size(); ++i) {
if (values[i] != 0.0) {
nullArray = false;
break;
}
}
minLumValue = std::min(values[4], minLumValue);
maxLumValue = std::max(values[4], minLumValue);
if (!nullArray) {
_fullData.insert(_fullData.end(), values.begin(), values.end());
}
} while (!file.eof());
// Normalize Luminosity:
for (size_t i = 0; i < _fullData.size(); i += _nValuesPerStar) {
_fullData[i + 4] = (_fullData[i + 4] - minLumValue) / (maxLumValue - minLumValue);
}
return true;
}
bool RenderableStars::loadCachedFile(const std::string& file) {
std::ifstream fileStream(file, std::ifstream::binary);
if (fileStream.good()) {
int8_t version = 0;
fileStream.read(reinterpret_cast<char*>(&version), sizeof(int8_t));
if (version != CurrentCacheVersion) {
LINFO("The format of the cached file has changed: deleting old cache");
fileStream.close();
FileSys.deleteFile(file);
return false;
}
int32_t nValues = 0;
fileStream.read(reinterpret_cast<char*>(&nValues), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_nValuesPerStar), sizeof(int32_t));
_fullData.resize(nValues);
fileStream.read(reinterpret_cast<char*>(&_fullData[0]),
nValues * sizeof(_fullData[0]));
bool success = fileStream.good();
return success;
}
else {
LERROR(fmt::format("Error opening file '{}' for loading cache file", file));
return false;
}
}
bool RenderableStars::saveCachedFile(const std::string& file) const {
std::ofstream fileStream(file, std::ofstream::binary);
if (fileStream.good()) {
fileStream.write(reinterpret_cast<const char*>(&CurrentCacheVersion),
sizeof(int8_t));
int32_t nValues = static_cast<int32_t>(_fullData.size());
if (nValues == 0) {
LERROR("Error writing cache: No values were loaded");
return false;
}
fileStream.write(reinterpret_cast<const char*>(&nValues), sizeof(int32_t));
int32_t nValuesPerStar = static_cast<int32_t>(_nValuesPerStar);
fileStream.write(reinterpret_cast<const char*>(&nValuesPerStar), sizeof(int32_t));
size_t nBytes = nValues * sizeof(_fullData[0]);
fileStream.write(reinterpret_cast<const char*>(&_fullData[0]), nBytes);
bool success = fileStream.good();
return success;
}
else {
LERROR(fmt::format("Error opening file '{}' for save cache file", file));
return false;
}
}
void RenderableStars::createDataSlice(ColorOption option) {
_slicedData.clear();
for (size_t i = 0; i < _fullData.size(); i+=_nValuesPerStar) {
glm::vec3 p = glm::vec3(_fullData[i + 0], _fullData[i + 1], _fullData[i + 2]);
p *= openspace::distanceconstants::Parsec;
switch (option) {
case ColorOption::Color:
{
union {
ColorVBOLayout value;
std::array<float, sizeof(ColorVBOLayout) / sizeof(float)> data;
} layout;
layout.value.position = { {
p[0], p[1], p[2], 1.0
} };
#ifdef USING_STELLAR_TEST_GRID
layout.value.bvColor = 0.650;// _fullData[i + 3];
layout.value.luminance = _fullData[i + 4];
layout.value.absoluteMagnitude = _fullData[i + 3];
#else
layout.value.bvColor = _fullData[i + 3];
layout.value.luminance = _fullData[i + 4];
layout.value.absoluteMagnitude = _fullData[i + 5];
#endif
_slicedData.insert(_slicedData.end(),
layout.data.begin(),
layout.data.end());
break;
}
case ColorOption::Velocity:
{
union {
VelocityVBOLayout value;
std::array<float, sizeof(VelocityVBOLayout) / sizeof(float)> data;
} layout;
layout.value.position = { {
p[0], p[1], p[2], 1.0
} };
layout.value.bvColor = _fullData[i + 3];
layout.value.luminance = _fullData[i + 4];
layout.value.absoluteMagnitude = _fullData[i + 5];
layout.value.vx = _fullData[i + 12];
layout.value.vy = _fullData[i + 13];
layout.value.vz = _fullData[i + 14];
_slicedData.insert(_slicedData.end(),
layout.data.begin(),
layout.data.end());
break;
}
case ColorOption::Speed:
{
union {
SpeedVBOLayout value;
std::array<float, sizeof(SpeedVBOLayout) / sizeof(float)> data;
} layout;
layout.value.position = { {
p[0], p[1], p[2], 1.0
} };
layout.value.bvColor = _fullData[i + 3];
layout.value.luminance = _fullData[i + 4];
layout.value.absoluteMagnitude = _fullData[i + 5];
layout.value.speed = _fullData[i + 15];
_slicedData.insert(_slicedData.end(),
layout.data.begin(),
layout.data.end());
break;
}
}
}
}
} // namespace openspace