Files
OpenSpace/modules/fieldlinessequence/rendering/renderablefieldlinessequence.cpp
2024-02-06 15:53:24 +01:00

1269 lines
46 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2024 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/fieldlinessequence/rendering/renderablefieldlinessequence.h>
#include <modules/fieldlinessequence/fieldlinessequencemodule.h>
#include <modules/fieldlinessequence/util/kameleonfieldlinehelper.h>
#include <openspace/engine/globals.h>
#include <openspace/engine/windowdelegate.h>
#include <openspace/navigation/navigationhandler.h>
#include <openspace/navigation/orbitalnavigator.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/scene/scene.h>
#include <openspace/util/timemanager.h>
#include <openspace/util/updatestructures.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/misc/stringhelper.h>
#include <ghoul/opengl/openglstatecache.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/textureunit.h>
#include <filesystem>
#include <fstream>
#include <map>
#include <optional>
#include <thread>
namespace {
constexpr std::string_view _loggerCat = "RenderableFieldlinesSequence";
constexpr openspace::properties::Property::PropertyInfo ColorMethodInfo = {
"ColorMethod",
"Color Method",
"Color lines uniformly or using color tables based on extra quantities like, for "
"examples, temperature or particle density",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo ColorQuantityInfo = {
"ColorQuantity",
"Quantity to Color By",
"Quantity used to color lines if the 'By Quantity' color method is selected",
// @VISIBILITY(2.67)
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo ColorMinMaxInfo = {
"ColorQuantityMinMax",
"ColorTable Min Value",
"Value to map to the lowest and highest end of the color table",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo ColorTablePathInfo = {
"ColorTablePath",
"Path to Color Table",
"Color Table/Transfer Function to use for 'By Quantity' coloring",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo ColorUniformInfo = {
"Color",
"Uniform Line Color",
"The uniform color of lines shown when 'Color Method' is set to 'Uniform'",
// @VISIBILITY(1.67)
openspace::properties::Property::Visibility::NoviceUser
};
constexpr openspace::properties::Property::PropertyInfo ColorUseABlendingInfo = {
"ABlendingEnabled",
"Additive Blending",
"Activate/deactivate additive blending",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo DomainEnabledInfo = {
"DomainEnabled",
"Domain Limits",
"Enable/Disable domain limits",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo DomainXInfo = {
"LimitsX",
"X-limits",
"Valid range along the X-axis. [Min, Max]",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo DomainYInfo = {
"LimitsY",
"Y-limits",
"Valid range along the Y-axis. [Min, Max]",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo DomainZInfo = {
"LimitsZ",
"Z-limits",
"Valid range along the Z-axis. [Min, Max]",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo DomainRInfo = {
"LimitsR",
"Radial limits",
"Valid radial range. [Min, Max]",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo FlowColorInfo = {
"FlowColor",
"Flow Color",
"Color of particles flow direction indication",
// @VISIBILITY(1.33)
openspace::properties::Property::Visibility::NoviceUser
};
constexpr openspace::properties::Property::PropertyInfo FlowEnabledInfo = {
"FlowEnabled",
"Flow Direction",
"Toggles the rendering of moving particles along the lines. Can, for example, "
"illustrate magnetic flow",
// @VISIBILITY(1.67)
openspace::properties::Property::Visibility::NoviceUser
};
constexpr openspace::properties::Property::PropertyInfo FlowReversedInfo = {
"Reversed",
"Reversed Flow",
"Toggle to make the flow move in the opposite direction",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo FlowParticleSizeInfo = {
"ParticleSize",
"Particle Size",
"Size of the particles",
// @VISIBILITY(2.33)
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo FlowParticleSpacingInfo = {
"ParticleSpacing",
"Particle Spacing",
"Spacing inbetween particles",
// @VISIBILITY(2.33)
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo FlowSpeedInfo = {
"Speed",
"Speed",
"Speed of the flow",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo MaskingEnabledInfo = {
"MaskingEnabled",
"Masking",
"Enable/disable masking. Use masking to show lines where a given quantity is "
"within a given range, for example, if you only want to see where the "
"temperature is between 10 and 20 degrees. Also used for masking out line "
"topologies like solar wind & closed lines",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo MaskingMinMaxInfo = {
"MaskingMinLimit",
"Lower Limit",
"Lower and upper limit of the valid masking range",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo MaskingQuantityInfo = {
"MaskingQuantity",
"Quantity used for Masking",
"Quantity used for masking",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo LineWidthInfo = {
"LineWidth",
"Line Width",
"This value specifies the line width of the fieldlines",
// @VISIBILITY(1.33)
openspace::properties::Property::Visibility::NoviceUser
};
constexpr openspace::properties::Property::PropertyInfo TimeJumpButtonInfo = {
"TimeJumpToStart",
"Jump to Start Of Sequence",
"Performs a time jump to the start of the sequence",
openspace::properties::Property::Visibility::NoviceUser
};
struct [[codegen::Dictionary(RenderableFieldlinesSequence)]] Parameters {
enum class SourceFileType {
Cdf,
Json,
Osfls
};
// Input file type. Should be cdf, json or osfls
SourceFileType inputFileType;
// Path to folder containing the input files
std::filesystem::path sourceFolder [[codegen::directory()]];
// Path to a .txt file containing seed points. Mandatory if CDF as input.
// Files need time stamp in file name like so: yyyymmdd_hhmmss.txt
std::optional<std::filesystem::path> seedPointDirectory [[codegen::directory()]];
// Currently supports: batsrus, enlil & pfss
std::optional<std::string> simulationModel;
// Extra variables such as rho, p or t
std::optional<std::vector<std::string>> extraVariables;
// Which variable in CDF file to trace. b is default for fieldline
std::optional<std::string> tracingVariable;
// Convert the models distance unit, ex. AU for Enlil, to meters.
// Can be used during runtime to scale domain limits.
// 1.f is default, assuming meters as input.
std::optional<float> scaleToMeters;
// Set to true if you are streaming data during runtime
std::optional<bool> loadAtRuntime;
// [[codegen::verbatim(ColorUniformInfo.description)]]
std::optional<glm::vec4> color [[codegen::color()]];
// A list of paths to transferfunction .txt files containing color tables
// used for colorizing the fieldlines according to different parameters
std::optional<std::vector<std::string>> colorTablePaths;
// [[codegen::verbatim(ColorMethodInfo.description)]]
std::optional<std::string> colorMethod;
// [[codegen::verbatim(ColorQuantityInfo.description)]]
std::optional<int> colorQuantity;
// List of ranges for which their corresponding parameters values will be
// colorized by. Should be entered as {min value, max value} per range
std::optional<std::vector<glm::vec2>> colorTableRanges;
// Enables flow, showing the direction, but not accurate speed, that particles
// would be traveling
std::optional<bool> flowEnabled;
// [[codegen::verbatim(FlowColorInfo.description)]]
std::optional<glm::vec4> flowColor [[codegen::color()]];
// [[codegen::verbatim(FlowReversedInfo.description)]]
std::optional<bool> reversedFlow;
// [[codegen::verbatim(FlowParticleSizeInfo.description)]]
std::optional<int> particleSize;
// [[codegen::verbatim(FlowParticleSpacingInfo.description)]]
std::optional<int> particleSpacing;
// [[codegen::verbatim(FlowSpeedInfo.description)]]
std::optional<int> flowSpeed;
// [[codegen::verbatim(MaskingEnabledInfo.description)]]
std::optional<bool> maskingEnabled;
// [[codegen::verbatim(MaskingQuantityInfo.description)]]
std::optional<int> maskingQuantity;
// List of ranges for which their corresponding parameters values will be
// masked by. Should be entered as {min value, max value} per range
std::optional<std::vector<glm::vec2>> maskingRanges;
// Value should be path to folder where states are saved. Specifying this
// makes it use file type converter
// (JSON/CDF input => osfls output & oslfs input => JSON output)
std::optional<std::string> outputFolder;
// [[codegen::verbatim(LineWidthInfo.description)]]
std::optional<float> lineWidth;
// If data sets parameter start_time differ from start of run,
// elapsed_time_in_seconds might be in relation to start of run.
// ManuelTimeOffset will be added to trigger time.
std::optional<double> manualTimeOffset;
};
#include "renderablefieldlinessequence_codegen.cpp"
} // namespace
namespace openspace {
fls::Model stringToModel(std::string str);
std::unordered_map<std::string, std::vector<glm::vec3>>
extractSeedPointsFromFiles(std::filesystem::path);
std::vector<std::string>
extractMagnitudeVarsFromStrings(std::vector<std::string> extrVars);
documentation::Documentation RenderableFieldlinesSequence::Documentation() {
return codegen::doc<Parameters>("fieldlinessequence_renderablefieldlinessequence");
}
RenderableFieldlinesSequence::RenderableFieldlinesSequence(
const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _colorGroup({ "Color" })
, _colorMethod(ColorMethodInfo, properties::OptionProperty::DisplayType::Radio)
, _colorQuantity(ColorQuantityInfo, properties::OptionProperty::DisplayType::Dropdown)
, _colorQuantityMinMax(
ColorMinMaxInfo,
glm::vec2(-0.f, 100.f),
glm::vec2(-5000.f),
glm::vec2(5000.f)
)
, _colorTablePath(ColorTablePathInfo)
, _colorUniform(
ColorUniformInfo,
glm::vec4(0.3f, 0.57f, 0.75f, 0.5f),
glm::vec4(0.f),
glm::vec4(1.f)
)
, _colorABlendEnabled(ColorUseABlendingInfo, true)
, _domainEnabled(DomainEnabledInfo, true)
, _domainGroup({ "Domain" })
, _domainX(DomainXInfo)
, _domainY(DomainYInfo)
, _domainZ(DomainZInfo)
, _domainR(DomainRInfo)
, _flowColor(
FlowColorInfo,
glm::vec4(0.96f, 0.88f, 0.8f, 0.5f),
glm::vec4(0.f),
glm::vec4(1.f)
)
, _flowEnabled(FlowEnabledInfo, false)
, _flowGroup({ "Flow" })
, _flowParticleSize(FlowParticleSizeInfo, 5, 0, 500)
, _flowParticleSpacing(FlowParticleSpacingInfo, 60, 0, 500)
, _flowReversed(FlowReversedInfo, false)
, _flowSpeed(FlowSpeedInfo, 20, 0, 1000)
, _maskingEnabled(MaskingEnabledInfo, false)
, _maskingGroup({ "Masking" })
, _maskingMinMax(
MaskingMinMaxInfo,
glm::vec2(0.f, 100.f),
glm::vec2(-5000.f),
glm::vec2(5000.f)
)
, _maskingQuantity(
MaskingQuantityInfo,
properties::OptionProperty::DisplayType::Dropdown
)
, _lineWidth(LineWidthInfo, 1.f, 1.f, 20.f)
, _jumpToStartBtn(TimeJumpButtonInfo)
{
const Parameters p = codegen::bake<Parameters>(dictionary);
addProperty(Fadeable::_opacity);
// Extracts the general information (from the asset file) that
// is mandatory for the class to function;
std::string fileTypeString;
switch (p.inputFileType) {
case Parameters::SourceFileType::Cdf:
_inputFileType = SourceFileType::Cdf;
fileTypeString = "cdf";
if (p.tracingVariable.has_value()) {
_tracingVariable = *p.tracingVariable;
}
else {
_tracingVariable = "b"; // Magnetic field variable as default
LWARNING(fmt::format(
"No tracing variable, using default '{}'", _tracingVariable
));
}
break;
case Parameters::SourceFileType::Json:
_inputFileType = SourceFileType::Json;
fileTypeString = "json";
break;
case Parameters::SourceFileType::Osfls:
_inputFileType = SourceFileType::Osfls;
fileTypeString = "osfls";
break;
}
// Ensure that the source folder exists and then extract
// the files with the same extension as fileTypeString
std::filesystem::path sourcePath = p.sourceFolder;
if (!std::filesystem::is_directory(sourcePath)) {
LERROR(fmt::format(
"FieldlinesSequence {} is not a valid directory",
sourcePath.string()
));
}
// Extract all file paths from the provided folder
namespace fs = std::filesystem;
for (const fs::directory_entry& e : fs::directory_iterator(sourcePath)) {
if (e.is_regular_file()) {
std::string eStr = e.path().string();
_sourceFiles.push_back(eStr);
}
}
std::sort(_sourceFiles.begin(), _sourceFiles.end());
// Remove all files that don't have fileTypeString as file extension
_sourceFiles.erase(
std::remove_if(
_sourceFiles.begin(),
_sourceFiles.end(),
[&fileTypeString](const std::string& str) {
const size_t extLength = fileTypeString.length();
std::string sub = str.substr(str.length() - extLength, extLength);
sub = ghoul::toLowerCase(sub);
return sub != fileTypeString;
}
),
_sourceFiles.end()
);
// Ensure that there are available and valid source files left
if (_sourceFiles.empty()) {
LERROR(fmt::format(
"{} contains no {} files", sourcePath.string(), fileTypeString
));
}
_extraVars = p.extraVariables.value_or(_extraVars);
_flowEnabled = p.flowEnabled.value_or(_flowEnabled);
_flowColor = p.flowColor.value_or(_flowColor);
_flowReversed = p.reversedFlow.value_or(_flowReversed);
_flowParticleSize = p.particleSize.value_or(_flowParticleSize);
_flowParticleSpacing = p.particleSpacing.value_or(_flowParticleSpacing);
_flowSpeed = p.flowSpeed.value_or(_flowSpeed);
_lineWidth = p.lineWidth.value_or(_lineWidth);
_manualTimeOffset = p.manualTimeOffset.value_or(_manualTimeOffset);
_modelStr = p.simulationModel.value_or(_modelStr);
_seedPointDirectory = p.seedPointDirectory.value_or(_seedPointDirectory);
_maskingEnabled = p.maskingEnabled.value_or(_maskingEnabled);
_maskingQuantityTemp = p.maskingQuantity.value_or(_maskingQuantityTemp);
if (p.colorTablePaths.has_value()) {
_colorTablePaths = p.colorTablePaths.value();
}
else {
// Set a default color table, just in case the (optional) user defined paths are
// corrupt or not provided
_colorTablePaths.push_back(FieldlinesSequenceModule::DefaultTransferFunctionFile);
}
_colorUniform = p.color.value_or(_colorUniform);
_colorMethod.addOption(static_cast<int>(ColorMethod::Uniform), "Uniform");
_colorMethod.addOption(static_cast<int>(ColorMethod::ByQuantity), "By Quantity");
if (p.colorMethod.has_value()) {
if (p.colorMethod.value() == "Uniform") {
_colorMethod = static_cast<int>(ColorMethod::Uniform);
}
else {
_colorMethod = static_cast<int>(ColorMethod::ByQuantity);
}
}
else {
_colorMethod = static_cast<int>(ColorMethod::Uniform);
}
if (p.colorQuantity.has_value()) {
_colorMethod = static_cast<int>(ColorMethod::ByQuantity);
_colorQuantityTemp = *p.colorQuantity;
}
if (p.colorTableRanges.has_value()) {
_colorTableRanges = *p.colorTableRanges;
}
else {
_colorTableRanges.push_back(glm::vec2(0.f, 1.f));
}
_loadingStatesDynamically = p.loadAtRuntime.value_or(_loadingStatesDynamically);
if (_loadingStatesDynamically && _inputFileType != SourceFileType::Osfls) {
LWARNING("Load at run time is only supported for osfls file type");
_loadingStatesDynamically = false;
}
if (p.maskingRanges.has_value()) {
_maskingRanges = *p.maskingRanges;
}
else {
_maskingRanges.push_back(glm::vec2(-100000.f, 100000.f)); // some default values
}
_outputFolderPath = p.outputFolder.value_or(_outputFolderPath);
if (!_outputFolderPath.empty() && !std::filesystem::is_directory(_outputFolderPath)) {
_outputFolderPath.clear();
LERROR(fmt::format(
"The specified output path: '{}', does not exist", _outputFolderPath
));
}
_scalingFactor = p.scaleToMeters.value_or(_scalingFactor);
}
void RenderableFieldlinesSequence::initialize() {
_transferFunction = std::make_unique<TransferFunction>(
absPath(_colorTablePaths[0]).string()
);
}
void RenderableFieldlinesSequence::initializeGL() {
// Setup shader program
_shaderProgram = global::renderEngine->buildRenderProgram(
"FieldlinesSequence",
absPath("${MODULE_FIELDLINESSEQUENCE}/shaders/fieldlinessequence_vs.glsl"),
absPath("${MODULE_FIELDLINESSEQUENCE}/shaders/fieldlinessequence_fs.glsl")
);
// Extract source file type specific information from dictionary
// & get states from source
switch (_inputFileType) {
case SourceFileType::Cdf:
if (!getStatesFromCdfFiles()) {
return;
}
break;
case SourceFileType::Json:
if (!loadJsonStatesIntoRAM()) {
return;
}
break;
case SourceFileType::Osfls:
if (_loadingStatesDynamically) {
if (!prepareForOsflsStreaming()) {
return;
}
}
else {
loadOsflsStatesIntoRAM();
}
break;
default:
return;
}
// No need to store source paths in memory if they are already in RAM
if (!_loadingStatesDynamically) {
_sourceFiles.clear();
}
// At this point there should be at least one state loaded into memory
if (_states.empty()) {
LERROR("Wasn't able to extract any valid states from provided source files");
return;
}
computeSequenceEndTime();
setModelDependentConstants();
setupProperties();
glGenVertexArrays(1, &_vertexArrayObject);
glGenBuffers(1, &_vertexPositionBuffer);
glGenBuffers(1, &_vertexColorBuffer);
glGenBuffers(1, &_vertexMaskingBuffer);
// Needed for additive blending
setRenderBin(Renderable::RenderBin::Overlay);
}
// Returns fls::Model::Invalid if it fails to extract mandatory information
fls::Model stringToModel(std::string str) {
str = ghoul::toLowerCase(str);
return fls::stringToModel(str);
}
bool RenderableFieldlinesSequence::loadJsonStatesIntoRAM() {
fls::Model model = stringToModel(_modelStr);
for (const std::string& filePath : _sourceFiles) {
FieldlinesState newState;
const bool loadedSuccessfully = newState.loadStateFromJson(
filePath,
model,
_scalingFactor
);
if (loadedSuccessfully) {
addStateToSequence(newState);
if (!_outputFolderPath.empty()) {
newState.saveStateToOsfls(_outputFolderPath);
}
}
}
return true;
}
bool RenderableFieldlinesSequence::prepareForOsflsStreaming() {
extractTriggerTimesFromFileNames();
FieldlinesState newState;
if (!newState.loadStateFromOsfls(_sourceFiles[0])) {
LERROR("The provided .osfls files seem to be corrupt");
return false;
}
_states.push_back(newState);
_nStates = _startTimes.size();
if (_nStates == 1) {
// loading dynamicaly is not nessesary if only having one set in the sequence
_loadingStatesDynamically = false;
}
_activeStateIndex = 0;
return true;
}
void RenderableFieldlinesSequence::loadOsflsStatesIntoRAM() {
for (const std::string& filePath : _sourceFiles) {
FieldlinesState newState;
if (newState.loadStateFromOsfls(filePath)) {
addStateToSequence(newState);
if (!_outputFolderPath.empty()) {
newState.saveStateToJson(
_outputFolderPath + std::filesystem::path(filePath).stem().string()
);
}
}
else {
LWARNING(fmt::format("Failed to load state from: {}", filePath));
}
}
}
void RenderableFieldlinesSequence::setupProperties() {
bool hasExtras = (_states[0].nExtraQuantities() > 0);
// Add non-grouped properties (enablers and buttons)
addProperty(_colorABlendEnabled);
addProperty(_domainEnabled);
addProperty(_flowEnabled);
if (hasExtras) {
addProperty(_maskingEnabled);
}
addProperty(_lineWidth);
addProperty(_jumpToStartBtn);
// Add Property Groups
addPropertySubOwner(_colorGroup);
addPropertySubOwner(_domainGroup);
addPropertySubOwner(_flowGroup);
if (hasExtras) {
addPropertySubOwner(_maskingGroup);
}
// Add Properties to the groups
_colorUniform.setViewOption(properties::Property::ViewOptions::Color);
_colorGroup.addProperty(_colorUniform);
_domainGroup.addProperty(_domainX);
_domainGroup.addProperty(_domainY);
_domainGroup.addProperty(_domainZ);
_domainGroup.addProperty(_domainR);
_flowGroup.addProperty(_flowReversed);
_flowColor.setViewOption(properties::Property::ViewOptions::Color);
_flowGroup.addProperty(_flowColor);
_flowGroup.addProperty(_flowParticleSize);
_flowGroup.addProperty(_flowParticleSpacing);
_flowGroup.addProperty(_flowSpeed);
if (hasExtras) {
_colorGroup.addProperty(_colorMethod);
_colorGroup.addProperty(_colorQuantity);
_colorQuantityMinMax.setViewOption(
properties::Property::ViewOptions::MinMaxRange
);
_colorGroup.addProperty(_colorQuantityMinMax);
_colorGroup.addProperty(_colorTablePath);
_maskingGroup.addProperty(_maskingQuantity);
_maskingMinMax.setViewOption(properties::Property::ViewOptions::MinMaxRange);
_maskingGroup.addProperty(_maskingMinMax);
// Add option for each extra quantity. Assumes there are just as many names to
// extra quantities as there are extra quantities. Also assume that all states in
// the given sequence have the same extra quantities
const size_t nExtraQuantities = _states[0].nExtraQuantities();
const std::vector<std::string>& extraNamesVec = _states[0].extraQuantityNames();
for (int i = 0; i < static_cast<int>(nExtraQuantities); ++i) {
_colorQuantity.addOption(i, extraNamesVec[i]);
_maskingQuantity.addOption(i, extraNamesVec[i]);
}
// Each quantity should have its own color table and color table range
// no more, no less
_colorTablePaths.resize(nExtraQuantities, _colorTablePaths.back());
_colorTablePath = _colorTablePaths[0];
_colorTableRanges.resize(nExtraQuantities, _colorTableRanges.back());
_maskingRanges.resize(nExtraQuantities, _maskingRanges.back());
}
definePropertyCallbackFunctions();
if (hasExtras) {
// Set defaults
_colorQuantity = _colorQuantityTemp;
_colorQuantityMinMax = _colorTableRanges[_colorQuantity];
_maskingQuantity = _maskingQuantityTemp;
_maskingMinMax = _maskingRanges[_colorQuantity];
}
}
void RenderableFieldlinesSequence::definePropertyCallbackFunctions() {
// Add Property Callback Functions
bool hasExtras = (_states[0].nExtraQuantities() > 0);
if (hasExtras) {
_colorQuantity.onChange([this]() {
_shouldUpdateColorBuffer = true;
_colorQuantityMinMax = _colorTableRanges[_colorQuantity];
_colorTablePath = _colorTablePaths[_colorQuantity];
});
_colorTablePath.onChange([this]() {
_transferFunction->setPath(_colorTablePath);
});
_colorQuantityMinMax.onChange([this]() {
_colorTableRanges[_colorQuantity] = _colorQuantityMinMax;
});
_maskingQuantity.onChange([this]() {
_shouldUpdateMaskingBuffer = true;
_maskingMinMax = _maskingRanges[_maskingQuantity];
});
_maskingMinMax.onChange([this]() {
_maskingRanges[_maskingQuantity] = _maskingMinMax;
});
}
_jumpToStartBtn.onChange([this]() {
global::timeManager->setTimeNextFrame(Time(_startTimes[0]));
});
}
// Calculate expected end time.
void RenderableFieldlinesSequence::computeSequenceEndTime() {
if (_nStates > 1) {
const double lastTriggerTime = _startTimes[_nStates - 1];
const double sequenceDuration = lastTriggerTime - _startTimes[0];
const double averageStateDuration = sequenceDuration /
(static_cast<double>(_nStates) - 1.0);
_sequenceEndTime = lastTriggerTime + averageStateDuration;
}
}
void RenderableFieldlinesSequence::setModelDependentConstants() {
const fls::Model simulationModel = _states[0].model();
float limit = 100.f; // Just used as a default value.
switch (simulationModel) {
case fls::Model::Batsrus:
_scalingFactor = fls::ReToMeter;
limit = 300.f; // Should include a long magnetotail
break;
case fls::Model::Enlil:
_flowReversed = true;
_scalingFactor = fls::AuToMeter;
limit = 50.f; // Should include Plutos furthest distance from the Sun
break;
case fls::Model::Pfss:
_scalingFactor = fls::RsToMeter;
limit = 100.f; // Just a default value far away from the solar surface
break;
default:
break;
}
_domainX.setMinValue(glm::vec2(-limit));
_domainX.setMaxValue(glm::vec2(limit));
_domainY.setMinValue(glm::vec2(-limit));
_domainY.setMaxValue(glm::vec2(limit));
_domainZ.setMinValue(glm::vec2(-limit));
_domainZ.setMaxValue(glm::vec2(limit));
// Radial should range from 0 out to a corner of the cartesian box:
// sqrt(3) = 1.732..., 1.75 is a nice and round number
_domainR.setMinValue(glm::vec2(0.f));
_domainR.setMaxValue(glm::vec2(limit * 1.75f));
_domainX = glm::vec2(-limit, limit);
_domainY = glm::vec2(-limit, limit);
_domainZ = glm::vec2(-limit, limit);
_domainR = glm::vec2(0.f, limit * 1.5f);
}
// Extract J2000 time from file names
// Requires files to be named as such: 'YYYY-MM-DDTHH-MM-SS-XXX.osfls'
void RenderableFieldlinesSequence::extractTriggerTimesFromFileNames() {
// number of characters in filename (excluding '.osfls')
constexpr int FilenameSize = 23;
// size(".osfls")
constexpr int ExtSize = 6;
for (const std::string& filePath : _sourceFiles) {
const size_t strLength = filePath.size();
// Extract the filename from the path (without extension)
std::string timeString = filePath.substr(
strLength - FilenameSize - ExtSize,
FilenameSize - 1
);
// Ensure the separators are correct
timeString.replace(4, 1, "-");
timeString.replace(7, 1, "-");
timeString.replace(13, 1, ":");
timeString.replace(16, 1, ":");
timeString.replace(19, 1, ".");
const double triggerTime = Time::convertTime(timeString);
_startTimes.push_back(triggerTime);
}
}
void RenderableFieldlinesSequence::addStateToSequence(FieldlinesState& state) {
_states.push_back(state);
_startTimes.push_back(state.triggerTime());
++_nStates;
}
bool RenderableFieldlinesSequence::getStatesFromCdfFiles() {
std::vector<std::string> extraMagVars = extractMagnitudeVarsFromStrings(_extraVars);
std::unordered_map<std::string, std::vector<glm::vec3>> seedsPerFiles =
extractSeedPointsFromFiles(_seedPointDirectory);
if (seedsPerFiles.empty()) {
LERROR("No seed files found");
return false;
}
for (const std::string& cdfPath : _sourceFiles) {
FieldlinesState newState;
bool isSuccessful = fls::convertCdfToFieldlinesState(
newState,
cdfPath,
seedsPerFiles,
_manualTimeOffset,
_tracingVariable,
_extraVars,
extraMagVars
);
if (isSuccessful) {
addStateToSequence(newState);
if (!_outputFolderPath.empty()) {
newState.saveStateToOsfls(_outputFolderPath);
}
}
}
return true;
}
std::unordered_map<std::string, std::vector<glm::vec3>>
extractSeedPointsFromFiles(std::filesystem::path filePath)
{
std::unordered_map<std::string, std::vector<glm::vec3>> outMap;
if (!std::filesystem::is_directory(filePath)) {
LERROR(fmt::format(
"The specified seed point directory: '{}' does not exist", filePath
));
return outMap;
}
namespace fs = std::filesystem;
for (const fs::directory_entry& spFile : fs::directory_iterator(filePath)) {
std::string seedFilePath = spFile.path().string();
if (!spFile.is_regular_file() ||
seedFilePath.substr(seedFilePath.find_last_of('.') + 1) != "txt")
{
continue;
}
std::ifstream seedFile(seedFilePath);
if (!seedFile.good()) {
LERROR(fmt::format("Could not open seed points file '{}'", seedFilePath));
outMap.clear();
return {};
}
LDEBUG(fmt::format("Reading seed points from file '{}'", seedFilePath));
std::string line;
std::vector<glm::vec3> outVec;
while (std::getline(seedFile, line)) {
std::stringstream ss(line);
glm::vec3 point;
ss >> point.x;
ss >> point.y;
ss >> point.z;
outVec.push_back(std::move(point));
}
if (outVec.empty()) {
LERROR(fmt::format("Found no seed points in: {}", seedFilePath));
outMap.clear();
return {};
}
size_t lastIndex = seedFilePath.find_last_of('.');
std::string name = seedFilePath.substr(0, lastIndex); // remove file extention
size_t dateAndTimeSeperator = name.find_last_of('_');
std::string time = name.substr(dateAndTimeSeperator + 1, name.length());
std::string date = name.substr(dateAndTimeSeperator - 8, 8); // 8 for yyyymmdd
std::string dateAndTime = date + time;
// add outVec as value and time stamp as int as key
outMap[dateAndTime] = outVec;
}
return outMap;
}
std::vector<std::string>
extractMagnitudeVarsFromStrings(std::vector<std::string> extrVars)
{
std::vector<std::string> extraMagVars;
for (int i = 0; i < static_cast<int>(extrVars.size()); i++) {
const std::string& str = extrVars[i];
// Check if string is in the format specified for magnitude variables
if (str.substr(0, 2) == "|(" && str.substr(str.size() - 2, 2) == ")|") {
std::istringstream ss(str.substr(2, str.size() - 4));
std::string magVar;
size_t counter = 0;
while (std::getline(ss, magVar, ',')) {
magVar.erase(
std::remove_if(
magVar.begin(),
magVar.end(),
::isspace
),
magVar.end()
);
extraMagVars.push_back(magVar);
counter++;
if (counter == 3) {
break;
}
}
if (counter != 3 && counter > 0) {
extraMagVars.erase(extraMagVars.end() - counter, extraMagVars.end());
}
extrVars.erase(extrVars.begin() + i);
i--;
}
}
return extraMagVars;
}
void RenderableFieldlinesSequence::deinitializeGL() {
glDeleteVertexArrays(1, &_vertexArrayObject);
_vertexArrayObject = 0;
glDeleteBuffers(1, &_vertexPositionBuffer);
_vertexPositionBuffer = 0;
glDeleteBuffers(1, &_vertexColorBuffer);
_vertexColorBuffer = 0;
glDeleteBuffers(1, &_vertexMaskingBuffer);
_vertexMaskingBuffer = 0;
if (_shaderProgram) {
global::renderEngine->removeRenderProgram(_shaderProgram.get());
_shaderProgram = nullptr;
}
// Stall main thread until thread that's loading states is done
bool printedWarning = false;
while (_isLoadingStateFromDisk) {
if (!printedWarning) {
LWARNING("Trying to destroy class when an active thread is still using it");
printedWarning = true;
}
std::this_thread::sleep_for(std::chrono::milliseconds(5));
}
}
bool RenderableFieldlinesSequence::isReady() const {
return _shaderProgram != nullptr;
}
void RenderableFieldlinesSequence::render(const RenderData& data, RendererTasks&) {
if (_activeTriggerTimeIndex == -1) {
return;
}
_shaderProgram->activate();
// Calculate Model View MatrixProjection
const glm::dmat4 rotMat = glm::dmat4(data.modelTransform.rotation);
const glm::dmat4 modelMat =
glm::translate(glm::dmat4(1.0), data.modelTransform.translation) *
rotMat *
glm::dmat4(glm::scale(glm::dmat4(1), glm::dvec3(data.modelTransform.scale)));
const glm::dmat4 modelViewMat = data.camera.combinedViewMatrix() * modelMat;
_shaderProgram->setUniform("modelViewProjection",
data.camera.sgctInternal.projectionMatrix() * glm::mat4(modelViewMat));
_shaderProgram->setUniform("colorMethod", _colorMethod);
_shaderProgram->setUniform("lineColor", _colorUniform);
_shaderProgram->setUniform("usingDomain", _domainEnabled);
_shaderProgram->setUniform("usingMasking", _maskingEnabled);
if (_colorMethod == static_cast<int>(ColorMethod::ByQuantity)) {
ghoul::opengl::TextureUnit textureUnit;
textureUnit.activate();
_transferFunction->bind(); // Calls update internally
_shaderProgram->setUniform("colorTable", textureUnit);
_shaderProgram->setUniform("colorTableRange", _colorTableRanges[_colorQuantity]);
}
if (_maskingEnabled) {
_shaderProgram->setUniform("maskingRange", _maskingRanges[_maskingQuantity]);
}
_shaderProgram->setUniform("domainLimR", _domainR.value() * _scalingFactor);
_shaderProgram->setUniform("domainLimX", _domainX.value() * _scalingFactor);
_shaderProgram->setUniform("domainLimY", _domainY.value() * _scalingFactor);
_shaderProgram->setUniform("domainLimZ", _domainZ.value() * _scalingFactor);
// Flow/Particles
_shaderProgram->setUniform("flowColor", _flowColor);
_shaderProgram->setUniform("usingParticles", _flowEnabled);
_shaderProgram->setUniform("particleSize", _flowParticleSize);
_shaderProgram->setUniform("particleSpacing", _flowParticleSpacing);
_shaderProgram->setUniform("particleSpeed", _flowSpeed);
_shaderProgram->setUniform(
"time",
global::windowDelegate->applicationTime() * (_flowReversed ? -1 : 1)
);
_shaderProgram->setUniform("opacity", opacity());
bool additiveBlending = false;
if (_colorABlendEnabled) {
additiveBlending = true;
glDepthMask(false);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
}
glBindVertexArray(_vertexArrayObject);
#ifndef __APPLE__
glLineWidth(_lineWidth);
#else
glLineWidth(1.f);
#endif
glMultiDrawArrays(
GL_LINE_STRIP,
_states[_activeStateIndex].lineStart().data(),
_states[_activeStateIndex].lineCount().data(),
static_cast<GLsizei>(_states[_activeStateIndex].lineStart().size())
);
glBindVertexArray(0);
_shaderProgram->deactivate();
if (additiveBlending) {
// Restores OpenGL Rendering State
global::renderEngine->openglStateCache().resetBlendState();
global::renderEngine->openglStateCache().resetDepthState();
}
}
void RenderableFieldlinesSequence::update(const UpdateData& data) {
if (_shaderProgram->isDirty()) {
_shaderProgram->rebuildFromFile();
}
// True if new 'runtime-state' must be loaded from disk.
// False => the previous frame's state should still be shown
bool mustLoadNewStateFromDisk = false;
// True if new 'in-RAM-state' must be loaded.
// False => the previous frame's state should still be shown
bool needUpdate = false;
const double currentTime = data.time.j2000Seconds();
const bool isInInterval = (currentTime >= _startTimes[0]) &&
(currentTime < _sequenceEndTime);
// Check if current time in OpenSpace is within sequence interval
if (isInInterval) {
const size_t nextIdx = _activeTriggerTimeIndex + 1;
if (
// true => Previous frame was not within the sequence interval
_activeTriggerTimeIndex < 0 ||
// true => We stepped back to a time represented by another state
currentTime < _startTimes[_activeTriggerTimeIndex] ||
// true => We stepped forward to a time represented by another state
(nextIdx < _nStates && currentTime >= _startTimes[nextIdx]))
{
updateActiveTriggerTimeIndex(currentTime);
if (_loadingStatesDynamically) {
mustLoadNewStateFromDisk = true;
}
else {
needUpdate = true;
_activeStateIndex = _activeTriggerTimeIndex;
}
} // else {we're still in same state as previous frame (no changes needed)}
}
// if only one state
else if (_nStates == 1) {
_activeTriggerTimeIndex = 0;
_activeStateIndex = 0;
if (!_hasBeenUpdated) {
updateVertexPositionBuffer();
}
if (_states[_activeStateIndex].nExtraQuantities() > 0) {
_shouldUpdateColorBuffer = true;
_shouldUpdateMaskingBuffer = true;
}
_hasBeenUpdated = true;
}
else {
// Not in interval => set everything to false
_activeTriggerTimeIndex = -1;
mustLoadNewStateFromDisk = false;
needUpdate = false;
}
if (mustLoadNewStateFromDisk) {
if (!_isLoadingStateFromDisk && !_newStateIsReady) {
_isLoadingStateFromDisk = true;
mustLoadNewStateFromDisk = false;
std::string filePath = _sourceFiles[_activeTriggerTimeIndex];
std::thread readBinaryThread([this, f = std::move(filePath)]() {
readNewState(f);
});
readBinaryThread.detach();
}
}
if (needUpdate || _newStateIsReady) {
if (_loadingStatesDynamically) {
_states[0] = std::move(*_newState);
}
updateVertexPositionBuffer();
if (_states[_activeStateIndex].nExtraQuantities() > 0) {
_shouldUpdateColorBuffer = true;
_shouldUpdateMaskingBuffer = true;
}
// Everything is set and ready for rendering
needUpdate = false;
_newStateIsReady = false;
}
if (_colorMethod == 1) { //By quantity
if (_shouldUpdateColorBuffer) {
updateVertexColorBuffer();
_shouldUpdateColorBuffer = false;
}
if (_shouldUpdateMaskingBuffer) {
updateVertexMaskingBuffer();
_shouldUpdateMaskingBuffer = false;
}
}
}
// Assumes we already know that currentTime is within the sequence interval
void RenderableFieldlinesSequence::updateActiveTriggerTimeIndex(double currentTime) {
auto iter = std::upper_bound(_startTimes.begin(), _startTimes.end(), currentTime);
if (iter != _startTimes.end()) {
if (iter != _startTimes.begin()) {
_activeTriggerTimeIndex = static_cast<int>(
std::distance(_startTimes.begin(), iter)
) - 1;
}
else {
_activeTriggerTimeIndex = 0;
}
}
else {
_activeTriggerTimeIndex = static_cast<int>(_nStates) - 1;
}
if (_nStates == 1) {
_activeTriggerTimeIndex = 0;
}
}
// Reading state from disk. Must be thread safe
void RenderableFieldlinesSequence::readNewState(const std::string& filePath) {
_newState = std::make_unique<FieldlinesState>();
if (_newState->loadStateFromOsfls(filePath)) {
_newStateIsReady = true;
}
_isLoadingStateFromDisk = false;
}
// Unbind buffers and arrays
void unbindGL() {
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
void RenderableFieldlinesSequence::updateVertexPositionBuffer() {
if (_activeStateIndex == -1) { return; }
glBindVertexArray(_vertexArrayObject);
glBindBuffer(GL_ARRAY_BUFFER, _vertexPositionBuffer);
const std::vector<glm::vec3>& vertPos = _states[_activeStateIndex].vertexPositions();
glBufferData(
GL_ARRAY_BUFFER,
vertPos.size() * sizeof(glm::vec3),
vertPos.data(),
GL_STATIC_DRAW
);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
unbindGL();
}
void RenderableFieldlinesSequence::updateVertexColorBuffer() {
if (_activeStateIndex == -1) { return; }
glBindVertexArray(_vertexArrayObject);
glBindBuffer(GL_ARRAY_BUFFER, _vertexColorBuffer);
bool isSuccessful;
const std::vector<float>& quantities = _states[_activeStateIndex].extraQuantity(
_colorQuantity,
isSuccessful
);
if (isSuccessful) {
glBufferData(
GL_ARRAY_BUFFER,
quantities.size() * sizeof(float),
quantities.data(),
GL_STATIC_DRAW
);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 0, 0);
unbindGL();
}
}
void RenderableFieldlinesSequence::updateVertexMaskingBuffer() {
if (_activeStateIndex == -1) { return; }
glBindVertexArray(_vertexArrayObject);
glBindBuffer(GL_ARRAY_BUFFER, _vertexMaskingBuffer);
bool isSuccessful;
const std::vector<float>& maskings = _states[_activeStateIndex].extraQuantity(
_maskingQuantity,
isSuccessful
);
if (isSuccessful) {
glBufferData(
GL_ARRAY_BUFFER,
maskings.size() * sizeof(float),
maskings.data(),
GL_STATIC_DRAW
);
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 1, GL_FLOAT, GL_FALSE, 0, 0);
unbindGL();
}
}
} // namespace openspace