Files
OpenSpace/modules/autonavigation/path.cpp
2021-06-21 13:23:09 +02:00

223 lines
9.4 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2021 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/autonavigation/path.h>
#include <modules/autonavigation/autonavigationmodule.h>
#include <modules/autonavigation/helperfunctions.h>
#include <modules/autonavigation/pathcurve.h>
#include <modules/autonavigation/curves/avoidcollisioncurve.h>
#include <modules/autonavigation/curves/zoomoutoverviewcurve.h>
#include <openspace/engine/globals.h>
#include <openspace/engine/moduleengine.h>
#include <openspace/scene/scenegraphnode.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/misc/interpolator.h>
namespace {
constexpr const char* _loggerCat = "Path";
} // namespace
namespace openspace::pathnavigation {
Path::Path(Waypoint start, Waypoint end, CurveType type,
std::optional<double> duration)
: _start(start), _end(end), _curveType(type)
{
switch (_curveType) {
case CurveType::AvoidCollision:
_curve = std::make_unique<AvoidCollisionCurve>(_start, _end);
break;
case CurveType::Linear:
_curve = std::make_unique<LinearCurve>(_start, _end);
break;
case CurveType::ZoomOutOverview:
_curve = std::make_unique<ZoomOutOverviewCurve>(_start, _end);
break;
default:
LERROR("Could not create curve. Type does not exist!");
throw ghoul::MissingCaseException();
}
const auto defaultDuration = [](double pathlength) {
auto module = global::moduleEngine->module<AutoNavigationModule>();
const double speedScale = module->PathNavigationHandler().speedScale();
return std::log(pathlength) / speedScale;
};
_duration = duration.value_or(defaultDuration(pathLength()));
// Compute speed factor to match the generated path length and duration, by
// traversing the path and computing how much faster/slower it should be
const int nSteps = 500;
const double dt = (_duration / nSteps) > 0.01 ? (_duration / nSteps) : 0.01;
while (!hasReachedEnd()) {
traversePath(dt);
}
_speedFactorFromDuration = _progressedTime / _duration;
// Reset playback variables
_traveledDistance = 0.0;
_progressedTime = 0.0;
}
Waypoint Path::startPoint() const { return _start; }
Waypoint Path::endPoint() const { return _end; }
double Path::duration() const { return _duration; }
double Path::pathLength() const { return _curve->length(); }
std::vector<glm::dvec3> Path::controlPoints() const {
return _curve->points();
}
CameraPose Path::traversePath(double dt) {
const double speed = _speedFactorFromDuration * speedAlongPath(_traveledDistance);
const double displacement = dt * speed;
_progressedTime += dt;
_traveledDistance += displacement;
return interpolatedPose(_traveledDistance);
}
std::string Path::currentAnchor() const {
bool pastHalfway = (_traveledDistance / pathLength()) > 0.5;
return (pastHalfway) ? _end.nodeIdentifier : _start.nodeIdentifier;
}
bool Path::hasReachedEnd() const {
return (_traveledDistance / pathLength()) >= 1.0;
}
CameraPose Path::interpolatedPose(double distance) const {
const double relativeDistance = distance / pathLength();
CameraPose cs;
cs.position = _curve->positionAt(relativeDistance);
cs.rotation = interpolateRotation(relativeDistance);
return cs;
}
glm::dquat Path::interpolateRotation(double t) const {
switch (_curveType) {
case CurveType::AvoidCollision:
case CurveType::Linear:
return interpolation::easedSlerp(_start.rotation(), _end.rotation(), t);
case CurveType::ZoomOutOverview:
{
const double t1 = 0.2;
const double t2 = 0.8;
const glm::dvec3 startPos = _curve->positionAt(0.0);
const glm::dvec3 endPos = _curve->positionAt(1.0);
const glm::dvec3 startNodePos = _start.node()->worldPosition();
const glm::dvec3 endNodePos = _end.node()->worldPosition();
glm::dvec3 lookAtPos;
if (t < t1) {
// Compute a position in front of the camera at the start orientation
const double inFrontDistance = glm::distance(startPos, startNodePos);
const glm::dvec3 viewDir = helpers::viewDirection(_start.rotation());
const glm::dvec3 inFrontOfStart = startPos + inFrontDistance * viewDir;
const double tScaled = ghoul::cubicEaseInOut(t / t1);
lookAtPos =
ghoul::interpolateLinear(tScaled, inFrontOfStart, startNodePos);
}
else if (t <= t2) {
const double tScaled = ghoul::cubicEaseInOut((t - t1) / (t2 - t1));
lookAtPos = ghoul::interpolateLinear(tScaled, startNodePos, endNodePos);
}
else if (t > t2) {
// Compute a position in front of the camera at the end orientation
const double inFrontDistance = glm::distance(endPos, endNodePos);
const glm::dvec3 viewDir = helpers::viewDirection(_end.rotation());
const glm::dvec3 inFrontOfEnd = endPos + inFrontDistance * viewDir;
const double tScaled = ghoul::cubicEaseInOut((t - t2) / (1.0 - t2));
lookAtPos = ghoul::interpolateLinear(tScaled, endNodePos, inFrontOfEnd);
}
// Handle up vector separately
glm::dvec3 startUp = _start.rotation() * glm::dvec3(0.0, 1.0, 0.0);
glm::dvec3 endUp = _end.rotation() * glm::dvec3(0.0, 1.0, 0.0);
double tUp = helpers::shiftAndScale(t, t1, t2);
tUp = ghoul::sineEaseInOut(tUp);
glm::dvec3 up = ghoul::interpolateLinear(tUp, startUp, endUp);
return helpers::lookAtQuaternion(_curve->positionAt(t), lookAtPos, up);
}
default:
throw ghoul::MissingCaseException();
}
}
double Path::speedAlongPath(double traveledDistance) {
const glm::dvec3 endNodePos = _end.node()->worldPosition();
const glm::dvec3 startNodePos = _start.node()->worldPosition();
const CameraPose prevPose = interpolatedPose(traveledDistance);
const double distanceToEndNode = glm::distance(prevPose.position, endNodePos);
const double distanceToStartNode = glm::distance(prevPose.position, startNodePos);
// Decide which is the closest node
SceneGraphNode* closestNode = _start.node();
glm::dvec3 closestPos = startNodePos;
if (distanceToEndNode < distanceToStartNode) {
closestPos = endNodePos;
closestNode = _end.node();
}
const double distanceToClosestNode = glm::distance(closestPos, prevPose.position);
double speed = distanceToClosestNode;
// Dampen speed in beginning of path
const double startUpDistance = 2.0 * _start.node()->boundingSphere();
if (traveledDistance < startUpDistance) {
speed *= traveledDistance / startUpDistance + 0.01;
}
// Dampen speed in end of path
// Note: this leads to problems when the full length of the path is really big
const double closeUpDistance = 2.0 * _end.node()->boundingSphere();
if (traveledDistance > (pathLength() - closeUpDistance)) {
const double remainingDistance = pathLength() - traveledDistance;
speed *= remainingDistance / closeUpDistance + 0.01;
}
// TODO: also dampen speed based on curvature, or make sure the curve has a rounder shape
// TODO: check for when path is shorter than the starUpDistance or closeUpDistance variables
return speed;
}
} // namespace openspace::pathnavigation