mirror of
https://github.com/OpenSpace/OpenSpace.git
synced 2026-01-04 10:40:09 -06:00
254 lines
10 KiB
C++
254 lines
10 KiB
C++
/*****************************************************************************************
|
|
* *
|
|
* OpenSpace *
|
|
* *
|
|
* Copyright (c) 2014-2016 *
|
|
* *
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
|
|
* software and associated documentation files (the "Software"), to deal in the Software *
|
|
* without restriction, including without limitation the rights to use, copy, modify, *
|
|
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
|
|
* permit persons to whom the Software is furnished to do so, subject to the following *
|
|
* conditions: *
|
|
* *
|
|
* The above copyright notice and this permission notice shall be included in all copies *
|
|
* or substantial portions of the Software. *
|
|
* *
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
|
|
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
|
|
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
|
|
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
|
|
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
|
|
****************************************************************************************/
|
|
|
|
|
|
#include <ghoul/misc/assert.h>
|
|
|
|
#include <openspace/engine/openspaceengine.h>
|
|
|
|
#include <modules/globebrowsing/chunk/chunk.h>
|
|
#include <modules/globebrowsing/chunk/chunkedlodglobe.h>
|
|
#include <modules/globebrowsing/tile/layeredtextures.h>
|
|
|
|
#include <algorithm>
|
|
|
|
namespace {
|
|
const std::string _loggerCat = "Chunk";
|
|
}
|
|
|
|
namespace openspace {
|
|
|
|
Chunk::Chunk(ChunkedLodGlobe* owner, const ChunkIndex& chunkIndex, bool initVisible)
|
|
: _owner(owner)
|
|
, _surfacePatch(chunkIndex)
|
|
, _index(chunkIndex)
|
|
, _isVisible(initVisible)
|
|
{
|
|
|
|
}
|
|
|
|
const GeodeticPatch& Chunk::surfacePatch() const {
|
|
return _surfacePatch;
|
|
}
|
|
|
|
ChunkedLodGlobe* const Chunk::owner() const {
|
|
return _owner;
|
|
}
|
|
|
|
const ChunkIndex Chunk::index() const {
|
|
return _index;
|
|
}
|
|
|
|
bool Chunk::isVisible() const {
|
|
return _isVisible;
|
|
}
|
|
|
|
void Chunk::setIndex(const ChunkIndex& index) {
|
|
_index = index;
|
|
_surfacePatch = GeodeticPatch(index);
|
|
}
|
|
|
|
void Chunk::setOwner(ChunkedLodGlobe* newOwner) {
|
|
_owner = newOwner;
|
|
}
|
|
|
|
Chunk::Status Chunk::update(const RenderData& data) {
|
|
Camera* savedCamera = _owner->getSavedCamera();
|
|
const Camera& camRef = savedCamera != nullptr ? *savedCamera : data.camera;
|
|
RenderData myRenderData = { camRef, data.position, data.doPerformanceMeasurement };
|
|
|
|
_isVisible = true;
|
|
if (_owner->testIfCullable(*this, myRenderData)) {
|
|
_isVisible = false;
|
|
return Status::WANT_MERGE;
|
|
}
|
|
|
|
int desiredLevel = _owner->getDesiredLevel(*this, myRenderData);
|
|
|
|
if (desiredLevel < _index.level) return Status::WANT_MERGE;
|
|
else if (_index.level < desiredLevel) return Status::WANT_SPLIT;
|
|
else return Status::DO_NOTHING;
|
|
}
|
|
|
|
Chunk::BoundingHeights Chunk::getBoundingHeights() const {
|
|
BoundingHeights boundingHeights;
|
|
boundingHeights.max = _owner->chunkHeight;
|
|
boundingHeights.min = 0;
|
|
boundingHeights.available = false;
|
|
|
|
// In the future, this should be abstracted away and more easily queryable.
|
|
// One must also handle how to sample pick one out of multiplte heightmaps
|
|
auto tileProvidermanager = owner()->getTileProviderManager();
|
|
auto heightMapProviders = tileProvidermanager->getActivatedLayerCategory(LayeredTextures::HeightMaps);
|
|
if (heightMapProviders.size() > 0) {
|
|
TileAndTransform tileAndTransform = heightMapProviders[0]->getHighestResolutionTile(_index);
|
|
if (tileAndTransform.tile.status == Tile::Status::OK) {
|
|
std::shared_ptr<TilePreprocessData> preprocessData = tileAndTransform.tile.preprocessData;
|
|
if ((preprocessData != nullptr) && preprocessData->maxValues.size() > 0) {
|
|
boundingHeights.max = preprocessData->maxValues[0];
|
|
boundingHeights.min = preprocessData->minValues[0];
|
|
boundingHeights.available = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return boundingHeights;
|
|
}
|
|
|
|
|
|
void Chunk::render(const RenderData& data) const {
|
|
_owner->getPatchRenderer().renderChunk(*this, data);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
// Chunk evaluation //
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
int EvaluateChunkLevelByDistance::getDesiredLevel(const Chunk& chunk, const RenderData& data) const {
|
|
ChunkedLodGlobe const * globe = chunk.owner();
|
|
const Ellipsoid& ellipsoid = globe->ellipsoid();
|
|
|
|
Vec3 cameraPosition = data.camera.positionVec3();
|
|
Geodetic2 pointOnPatch = chunk.surfacePatch().closestPoint(
|
|
ellipsoid.cartesianToGeodetic2(cameraPosition));
|
|
|
|
Chunk::BoundingHeights heights = chunk.getBoundingHeights();
|
|
|
|
Vec3 globePosition = data.position.dvec3();
|
|
Vec3 patchPosition = globePosition + ellipsoid.cartesianSurfacePosition(pointOnPatch);
|
|
Vec3 cameraToChunk = patchPosition - cameraPosition;
|
|
|
|
|
|
// Calculate desired level based on distance
|
|
Scalar distanceToPatch = glm::length(cameraToChunk);
|
|
Scalar distance = distanceToPatch - heights.min; // distance to actual minimum heights
|
|
|
|
Scalar scaleFactor = globe->lodScaleFactor * ellipsoid.minimumRadius();
|
|
Scalar projectedScaleFactor = scaleFactor / distance;
|
|
int desiredLevel = ceil(log2(projectedScaleFactor));
|
|
return desiredLevel;
|
|
}
|
|
|
|
int EvaluateChunkLevelByProjectedArea::getDesiredLevel(const Chunk& chunk, const RenderData& data) const {
|
|
ChunkedLodGlobe const * globe = chunk.owner();
|
|
const Ellipsoid& ellipsoid = globe->ellipsoid();
|
|
Vec3 cameraPosition = data.camera.positionVec3();
|
|
Vec3 globePosition = data.position.dvec3();
|
|
Vec3 cameraToEllipseCenter = globePosition - cameraPosition;
|
|
|
|
Geodetic2 camPos = ellipsoid.cartesianToGeodetic2(cameraPosition);
|
|
/*
|
|
struct CornerDist {
|
|
Geodetic2 corner;
|
|
float dist;
|
|
};
|
|
|
|
struct {
|
|
bool operator()(const CornerDist& a, const CornerDist& b) {
|
|
return a.dist < b.dist;
|
|
}
|
|
} byDist;
|
|
|
|
std::vector<CornerDist> cornerDists(4);
|
|
for (size_t i = 0; i < 4; i++) {
|
|
const Geodetic2& c = chunk.surfacePatch().getCorner((Quad)i);
|
|
Geodetic2 diff = (camPos - c);
|
|
float latDiff = fAngle::fromRadians(diff.lat).getNormalizedAround(fAngle::ZERO).asRadians();
|
|
float lonDiff = fAngle::fromRadians(diff.lon).getNormalizedAround(fAngle::ZERO).asRadians();
|
|
cornerDists[i].corner = c;
|
|
cornerDists[i].dist = latDiff*latDiff + lonDiff*lonDiff;;
|
|
}
|
|
|
|
std::sort(cornerDists.begin(), cornerDists.end(), byDist);
|
|
|
|
Chunk::BoundingHeights heights = chunk.getBoundingHeights();
|
|
|
|
const Geodetic3 c0 = { cornerDists[0].corner, heights.min };
|
|
const Geodetic3 c1 = { cornerDists[1].corner, heights.min };
|
|
const Geodetic3 c2 = { cornerDists[2].corner, heights.max };
|
|
const Geodetic3 c3 = { cornerDists[3].corner, heights.max };
|
|
*/
|
|
|
|
Chunk::BoundingHeights heights = chunk.getBoundingHeights();
|
|
|
|
const Geodetic3 c0 = { chunk.surfacePatch().getCorner((Quad)0), heights.min };
|
|
const Geodetic3 c1 = { chunk.surfacePatch().getCorner((Quad)1), heights.min };
|
|
const Geodetic3 c2 = { chunk.surfacePatch().getCorner((Quad)2), heights.min };
|
|
const Geodetic3 c3 = { chunk.surfacePatch().getCorner((Quad)3), heights.min };
|
|
|
|
Vec3 A = cameraToEllipseCenter + ellipsoid.cartesianPosition(c0);
|
|
Vec3 B = cameraToEllipseCenter + ellipsoid.cartesianPosition(c1);
|
|
Vec3 C = cameraToEllipseCenter + ellipsoid.cartesianPosition(c2);
|
|
Vec3 D = cameraToEllipseCenter + ellipsoid.cartesianPosition(c3);
|
|
|
|
// Project points onto unit sphere
|
|
A = glm::normalize(A);
|
|
B = glm::normalize(B);
|
|
C = glm::normalize(C);
|
|
D = glm::normalize(D);
|
|
|
|
|
|
/*
|
|
A-----____
|
|
| '''-----B
|
|
| __--' |
|
|
| __--'' |
|
|
C-----------------D
|
|
*/
|
|
|
|
const Vec3 AB = B - A;
|
|
const Vec3 AC = C - A;
|
|
const Vec3 DC = C - D;
|
|
const Vec3 DB = B - D;
|
|
|
|
double areaTriangle1 = 0.5 * glm::length(glm::cross(AC, AB));
|
|
double areaTriangle2 = 0.5 * glm::length(glm::cross(DC, DB));
|
|
double projectedChunkAreaApprox = areaTriangle1 + areaTriangle2;
|
|
|
|
double scaledArea = globe->lodScaleFactor * projectedChunkAreaApprox;
|
|
return chunk.index().level + round(scaledArea - 1);
|
|
}
|
|
|
|
int EvaluateChunkLevelByAvailableTileData::getDesiredLevel(const Chunk& chunk, const RenderData& data) const {
|
|
auto tileProvidermanager = chunk.owner()->getTileProviderManager();
|
|
auto heightMapProviders = tileProvidermanager->getActivatedLayerCategory(LayeredTextures::HeightMaps);
|
|
int currLevel = chunk.index().level;
|
|
|
|
// simply check the first heigtmap
|
|
if (heightMapProviders.size() > 0) {
|
|
Tile::Status heightTileStatus = heightMapProviders[0]->getTileStatus(chunk.index());
|
|
if (heightTileStatus == Tile::Status::IOError || heightTileStatus == Tile::Status::OutOfRange) {
|
|
return currLevel-1;
|
|
}
|
|
|
|
return UNKNOWN_DESIRED_LEVEL;
|
|
}
|
|
|
|
return UNKNOWN_DESIRED_LEVEL;
|
|
}
|
|
|
|
} // namespace openspace
|