Files
OpenSpace/modules/base/translation/tletranslation.cpp

375 lines
15 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/base/translation/tletranslation.h>
#include <openspace/documentation/verifier.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/misc/assert.h>
#include <chrono>
#include <fstream>
#include <vector>
namespace {
const char* KeyFile = "File";
// The list of leap years only goes until 2056 as we need to touch this file then
// again anyway ;)
static const std::vector<int> LeapYears = {
1956, 1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992, 1996,
2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040,
2044, 2048, 2052, 2056
};
// Count the number of full days since the beginning of 2000 to the beginning of
// the parameter 'year'
int countDays(int year) {
// Find the position of the current year in the vector, the difference
// between its position and the position of 2000 (for J2000) gives the
// number of leap years
const int Epoch = 2000;
const int DaysRegularYear = 365;
const int DaysLeapYear = 366;
if (year == Epoch) {
return 0;
}
// Get the position of the most recent leap year
auto lb = std::lower_bound(LeapYears.begin(), LeapYears.end(), year);
// Get the position of the epoch
auto y2000 = std::find(LeapYears.begin(), LeapYears.end(), Epoch);
// The distance between the two iterators gives us the number of leap years
int nLeapYears = std::abs(std::distance(y2000, lb));
int nYears = std::abs(year - Epoch);
int nRegularYears = nYears - nLeapYears;
// Get the total number of days as the sum of leap years + non leap years
int result = nRegularYears * DaysRegularYear + nLeapYears * DaysLeapYear;
return result;
};
// Returns the number of leap seconds that lie between the {year, dayOfYear}
// time point and { 2000, 1 }
int countLeapSeconds(int year, int dayOfYear) {
// Find the position of the current year in the vector; its position in
// the vector gives the number of leap seconds
struct LeapSecond {
int year;
int dayOfYear;
bool operator<(const LeapSecond& rhs) const {
return
std::tie(year, dayOfYear) < std::tie(rhs.year, rhs.dayOfYear);
}
};
const LeapSecond Epoch = { 2000, 1};
// List taken from: https://www.ietf.org/timezones/data/leap-seconds.list
static const std::vector<LeapSecond> LeapSeconds = {
{ 1972, 1 },
{ 1972, 183 },
{ 1973, 1 },
{ 1974, 1 },
{ 1975, 1 },
{ 1976, 1 },
{ 1977, 1 },
{ 1978, 1 },
{ 1979, 1 },
{ 1980, 1 },
{ 1981, 182 },
{ 1982, 182 },
{ 1983, 182 },
{ 1985, 182 },
{ 1988, 1 },
{ 1990, 1 },
{ 1991, 1 },
{ 1992, 183 },
{ 1993, 182 },
{ 1994, 182 },
{ 1996, 1 },
{ 1997, 182 },
{ 1999, 1 },
{ 2006, 1 },
{ 2009, 1 },
{ 2012, 183 },
{ 2015, 182 },
{ 2017, 1 }
};
// Get the position of the last leap second before the desired date
LeapSecond date { year, dayOfYear };
auto it = std::lower_bound(LeapSeconds.begin(), LeapSeconds.end(), date);
// Get the position of the Epoch
auto y2000 = std::lower_bound(LeapSeconds.begin(), LeapSeconds.end(), Epoch);
// The distance between the two iterators gives us the number of leap years
int nLeapSeconds = std::abs(std::distance(y2000, it));
return nLeapSeconds;
};
double epochFromSubstring(const std::string& epochString) {
// The epochString is in the form:
// YYDDD.DDDDDDDD
// With YY being the last two years of the launch epoch, the first DDD the day
// of the year and the remaning a fractional part of the day
// The main overview of this function:
// 1. Reconstruct the full year from the YY part
// 2. Calculate the number of seconds since the beginning of the year
// 2.a Get the number of full days since the beginning of the year
// 2.b If the year is a leap year, modify the number of days
// 3. Convert the number of days to a number of seconds
// 4. Get the number of leap seconds since January 1st, 2000 and remove them
// 5. Adjust for the fact the epoch starts on 1st Januaray at 12:00:00, not
// midnight
// According to https://celestrak.com/columns/v04n03/
// Apparently, US Space Command sees no need to change the two-line element
// set format yet since no artificial earth satellites existed prior to 1957.
// By their reasoning, two-digit years from 57-99 correspond to 1957-1999 and
// those from 00-56 correspond to 2000-2056. We'll see each other again in 2057!
// 1. Get the full year
std::string yearPrefix = [y = epochString.substr(0, 2)](){
int year = std::atoi(y.c_str());
return year >= 57 ? "19" : "20";
}();
int year = std::atoi((yearPrefix + epochString.substr(0, 2)).c_str());
int daysSince2000 = countDays(year);
// 2.
// 2.a
double daysInYear = std::atof(epochString.substr(2).c_str());
// 2.b
bool isInLeapYear = std::find(
LeapYears.begin(),
LeapYears.end(),
year
) != LeapYears.end();
if (isInLeapYear && daysInYear >= 60) {
// We are in a leap year, so we have an effective day more if we are
// beyond the end of february (= 31+29 days)
--daysInYear;
}
// 3
using namespace std::chrono;
int SecondsPerDay = seconds(hours(24)).count();
double nSecondsSince2000 = (daysSince2000 + daysInYear) * SecondsPerDay;
// 4
// We need to remove additionbal leap seconds past 2000 and add them prior to
// 2000 to sync up the time zones
double nLeapSecondsOffset = -countLeapSeconds(year, std::floor(daysInYear));
// 5
double nSecondsEpochOffset = seconds(hours(12)).count();
// Combine all of the values
double epoch = nSecondsSince2000 + nLeapSecondsOffset - nSecondsEpochOffset;
return epoch;
}
double calculateSemiMajorAxis(double meanMotion) {
using namespace std::chrono;
const double GravitationalConstant = 6.6740831e-11;
const double MassEarth = 5.9721986e24;
const double muEarth = GravitationalConstant * MassEarth;
// Use Kepler's 3rd law to calculate semimajor axis
// a^3 / P^2 = mu / (2pi)^2
// <=> a = ((mu * P^2) / (2pi^2))^(1/3)
// with a = semimajor axis
// P = period in seconds
// mu = G*M_earth
using namespace std::chrono;
double period = seconds(hours(24)).count() / meanMotion;
const double pisq = glm::pi<double>() * glm::pi<double>();
double semiMajorAxis = pow((muEarth * period*period) / (4 * pisq), 1.0 / 3.0);
// We need the semi major axis in km instead of m
return semiMajorAxis / 1000.0;
}
}
namespace openspace {
Documentation TLETranslation::Documentation() {
using namespace openspace::documentation;
return {
"TLE Translation",
"base_transform_tle",
{
{
"Type",
new StringEqualVerifier("TLETranslation"),
"",
Optional::No
},
{
KeyFile,
new StringVerifier,
"Specifies the filename of the Two-Line-Element file",
Optional::No
}
},
Exhaustive::No
};
}
TLETranslation::TLETranslation(const ghoul::Dictionary& dictionary)
: KeplerTranslation()
{
documentation::testSpecificationAndThrow(
Documentation(),
dictionary,
"TLETranslation"
);
std::string file = dictionary.value<std::string>(KeyFile);
readTLEFile(file);
}
void TLETranslation::readTLEFile(const std::string& filename) {
ghoul_assert(FileSys.fileExists(filename), "The filename must exist");
std::ifstream file;
file.exceptions(std::ofstream::failbit | std::ofstream::badbit);
file.open(filename);
// All of the Kepler element information
struct {
double inclination;
double semiMajorAxis;
double ascendingNode;
double eccentricity;
double argumentOfPeriapsis;
double meanAnomaly;
double meanMotion;
double epoch;
} keplerElements;
std::string line;
while (std::getline(file, line)) {
if (line[0] == '1') {
// First line
// Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 08-08 Classification (U = Unclassified)
// 4 10-11 International Designator (Last two digits of launch year)
// 5 12-14 International Designator (Launch number of the year)
// 6 15-17 International Designator(piece of the launch) A
// 7 19-20 Epoch Year(last two digits of year)
// 8 21-32 Epoch(day of the year and fractional portion of the day)
// 9 34-43 First Time Derivative of the Mean Motion divided by two
// 10 45-52 Second Time Derivative of Mean Motion divided by six
// 11 54-61 BSTAR drag term(decimal point assumed)[10] - 11606 - 4
// 12 63-63 The "Ephemeris type"
// 13 65-68 Element set number.Incremented when a new TLE is generated
// 14 69-69 Checksum (modulo 10)
keplerElements.epoch = epochFromSubstring(line.substr(18, 14));
}
else if (line[0] == '2') {
// Second line
//Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 09-16 Inclination (degrees)
// 4 18-25 Right ascension of the ascending node (degrees)
// 5 27-33 Eccentricity (decimal point assumed)
// 6 35-42 Argument of perigee (degrees)
// 7 44-51 Mean Anomaly (degrees)
// 8 53-63 Mean Motion (revolutions per day)
// 9 64-68 Revolution number at epoch (revolutions)
// 10 69-69 Checksum (modulo 10)
std::stringstream stream;
stream.exceptions(std::ios::failbit);
// Get inclination
stream.str(line.substr(8, 8));
stream >> keplerElements.inclination;
stream.clear();
// Get Right ascension of the ascending node
stream.str(line.substr(17, 8));
stream >> keplerElements.ascendingNode;
stream.clear();
// Get Eccentricity
stream.str("0." + line.substr(26, 7));
stream >> keplerElements.eccentricity;
stream.clear();
// Get argument of periapsis
stream.str(line.substr(34, 8));
stream >> keplerElements.argumentOfPeriapsis;
stream.clear();
// Get mean anomaly
stream.str(line.substr(43, 8));
stream >> keplerElements.meanAnomaly;
stream.clear();
// Get mean motion
stream.str(line.substr(52, 11));
stream >> keplerElements.meanMotion;
break;
}
}
// Calculate the semi major axis based on the mean motion using kepler's laws
keplerElements.semiMajorAxis = calculateSemiMajorAxis(keplerElements.meanMotion);
// Converting the mean motion (revolutions per day) to period (seconds per revolution)
using namespace std::chrono;
double period = seconds(hours(24)).count() / keplerElements.meanMotion;
setKeplerElements(
keplerElements.eccentricity,
keplerElements.semiMajorAxis,
keplerElements.inclination,
keplerElements.ascendingNode,
keplerElements.argumentOfPeriapsis,
keplerElements.meanAnomaly,
period,
keplerElements.epoch
);
}
} // namespace openspace