Files
OpenSpace/modules/iswa/util/dataprocessor.cpp
Alexander Bock b50b52d351 Cleanup for coding style
Add strict mode to check_style_guide script
2017-11-08 10:35:39 -06:00

264 lines
9.9 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2017 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/iswa/util/dataprocessor.h>
#include <openspace/util/histogram.h>
#include <fstream>
namespace {
const char* _loggerCat = "DataProcessor";
} // namespace
namespace openspace {
DataProcessor::DataProcessor()
:_useLog(false)
,_useHistogram(false)
,_normValues(glm::vec2(1.0))
,_filterValues(glm::vec2(0.0))
,_histNormValues(glm::vec2(10.f, 10.f))
{
_coordinateVariables = {"x", "y", "z", "phi", "theta"};
}
DataProcessor::~DataProcessor() {};
void DataProcessor::useLog(bool useLog) {
_useLog = useLog;
}
void DataProcessor::useHistogram(bool useHistogram) {
_useHistogram = useHistogram;
}
void DataProcessor::normValues(glm::vec2 normValues) {
_normValues = normValues;
}
glm::size3_t DataProcessor::dimensions() {
return _dimensions;
}
glm::vec2 DataProcessor::filterValues() {
return _filterValues;
}
void DataProcessor::clear() {
_min.clear();
_max.clear();
_sum.clear();
_standardDeviation.clear();
_histograms.clear();
_numValues.clear();
}
float DataProcessor::processDataPoint(float value, int option) {
if (_numValues.empty()) {
return 0.f;
}
std::shared_ptr<Histogram> histogram = _histograms[option];
float mean = (1.f / _numValues[option]) * _sum[option];
float sd = _standardDeviation[option];
float v;
if (_useHistogram) {
v = histogram->equalize(
normalizeWithStandardScore(value, mean, sd, _histNormValues)
) / 512.f;
} else {
v = normalizeWithStandardScore(value, mean, sd, _normValues);
}
// float v = normalizeWithStandardScore(value, mean, sd, _normValues);
return v;
}
float DataProcessor::normalizeWithStandardScore(float value, float mean, float sd,
glm::vec2 normalizationValues)
{
float zScoreMin = normalizationValues.x; //10.0f;//_normValues.x;
float zScoreMax = normalizationValues.y; //10.0f;//_normValues.y;
float standardScore = ( value - mean ) / sd;
// Clamp intresting values
standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
//return and normalize
return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax );
}
float DataProcessor::unnormalizeWithStandardScore(float standardScore, float mean,
float sd, glm::vec2 normalizationValues)
{
float zScoreMin = normalizationValues.x;
float zScoreMax = normalizationValues.y;
float value = standardScore*(zScoreMax+zScoreMin)-zScoreMin;
value = value*sd+mean;
// std::cout << value << std::endl;
return value;
// float standardScore = ( value - mean ) / sd;
// // Clamp intresting values
// standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
// //return and normalize
// return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax );
}
void DataProcessor::initializeVectors(int numOptions){
if (_min.empty()) {
_min = std::vector<float>(numOptions, std::numeric_limits<float>::max());
}
if (_max.empty()) {
_max = std::vector<float>(numOptions, std::numeric_limits<float>::min());
}
if (_sum.empty()) {
_sum = std::vector<float>(numOptions, 0.0f);
}
if (_standardDeviation.empty()) {
_standardDeviation = std::vector<float>(numOptions, 0.0f);
}
if (_numValues.empty()) {
_numValues = std::vector<float>(numOptions, 0.0f);
}
if (_histograms.empty()) {
_histograms = std::vector<std::shared_ptr<Histogram>>(numOptions, nullptr);
}
}
void DataProcessor::calculateFilterValues(std::vector<int> selectedOptions) {
int numSelected = selectedOptions.size();
std::shared_ptr<Histogram> histogram;
float mean, standardDeviation, filterMid, filterWidth;
_filterValues = glm::vec2(0.0);
if (numSelected <= 0) {
return;
}
if (!_histograms.empty()) {
for (int option : selectedOptions) {
if (!_useHistogram) {
mean = (1.0/_numValues[option])*_sum[option];
standardDeviation = _standardDeviation[option];
histogram = _histograms[option];
filterMid = histogram->highestBinValue(_useHistogram);
filterWidth = mean+histogram->binWidth();
filterMid = normalizeWithStandardScore(filterMid, mean, standardDeviation, _normValues);
filterWidth = fabs(0.5-normalizeWithStandardScore(filterWidth, mean, standardDeviation, _normValues));
} else {
Histogram hist = _histograms[option]->equalize();
filterMid = hist.highestBinValue(true);
std::cout << filterMid << std::endl;
filterWidth = 1.f / 512.f;
}
_filterValues += glm::vec2(filterMid, filterWidth);
}
_filterValues /= numSelected;
}
}
void DataProcessor::add(std::vector<std::vector<float>>& optionValues,
std::vector<float>& sum)
{
int numOptions = optionValues.size();
int numValues;
float mean, value, variance, standardDeviation;
for (int i=0; i<numOptions; i++) {
std::vector<float> values = optionValues[i];
numValues = values.size();
variance = 0;
mean = (1.0f/numValues)*sum[i];
for (int j=0; j<numValues; j++) {
value = values[j];
variance += pow(value-mean, 2);
}
standardDeviation = sqrt(variance/ numValues);
float oldStandardDeviation = _standardDeviation[i];
float oldMean = (1.0f/_numValues[i])*_sum[i];
_sum[i] += sum[i];
_standardDeviation[i] = sqrt(pow(standardDeviation, 2) + pow(_standardDeviation[i], 2));
_numValues[i] += numValues;
mean = (1.0f/_numValues[i])*_sum[i];
float min = normalizeWithStandardScore(_min[i], mean, _standardDeviation[i], _histNormValues);
float max = normalizeWithStandardScore(_max[i], mean, _standardDeviation[i], _histNormValues);
if (!_histograms[i]) {
_histograms[i] = std::make_shared<Histogram>(min, max, 512);
}
else {
const float* histData = _histograms[i]->data();
float histMin = _histograms[i]->minValue();
float histMax = _histograms[i]->maxValue();
int numBins = _histograms[i]->numBins();
float unNormHistMin = unnormalizeWithStandardScore(histMin, oldMean, oldStandardDeviation, _histNormValues);
float unNormHistMax = unnormalizeWithStandardScore(histMax, oldMean, oldStandardDeviation, _histNormValues);
//unnormalize histMin, histMax
// min = std::min(min, histMin)
std::shared_ptr<Histogram> newHist = std::make_shared<Histogram>(
std::min(min, normalizeWithStandardScore(unNormHistMin, mean, _standardDeviation[i], _histNormValues)),
std::min(max, normalizeWithStandardScore(unNormHistMax, mean, _standardDeviation[i], _histNormValues)),
numBins
);
for (int j = 0; j < numBins; j++) {
value = j * (histMax-histMin)+histMin;
value = unnormalizeWithStandardScore(value, oldMean, oldStandardDeviation, _histNormValues);
_histograms[i]->add(normalizeWithStandardScore(value, mean, _standardDeviation[i], _histNormValues), histData[j]);
}
// _histograms[i]->changeRange(min, max);
_histograms[i] = newHist;
}
for (int j = 0; j < numValues; j++) {
value = values[j];
_histograms[i]->add(normalizeWithStandardScore(value, mean, _standardDeviation[i], _histNormValues), 1);
}
_histograms[i]->generateEqualizer();
std::cout << std::endl;
_histograms[i]->print();
std::cout << std::endl;
std::cout << "Eq: ";
Histogram hist = _histograms[i]->equalize();
hist.print();
}
}
} // namespace