mirror of
https://github.com/OpenSpace/OpenSpace.git
synced 2026-01-04 10:40:09 -06:00
264 lines
9.9 KiB
C++
264 lines
9.9 KiB
C++
/*****************************************************************************************
|
|
* *
|
|
* OpenSpace *
|
|
* *
|
|
* Copyright (c) 2014-2017 *
|
|
* *
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
|
|
* software and associated documentation files (the "Software"), to deal in the Software *
|
|
* without restriction, including without limitation the rights to use, copy, modify, *
|
|
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
|
|
* permit persons to whom the Software is furnished to do so, subject to the following *
|
|
* conditions: *
|
|
* *
|
|
* The above copyright notice and this permission notice shall be included in all copies *
|
|
* or substantial portions of the Software. *
|
|
* *
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
|
|
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
|
|
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
|
|
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
|
|
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
|
|
****************************************************************************************/
|
|
|
|
#include <modules/iswa/util/dataprocessor.h>
|
|
#include <openspace/util/histogram.h>
|
|
|
|
#include <fstream>
|
|
|
|
namespace {
|
|
const char* _loggerCat = "DataProcessor";
|
|
} // namespace
|
|
|
|
namespace openspace {
|
|
|
|
DataProcessor::DataProcessor()
|
|
:_useLog(false)
|
|
,_useHistogram(false)
|
|
,_normValues(glm::vec2(1.0))
|
|
,_filterValues(glm::vec2(0.0))
|
|
,_histNormValues(glm::vec2(10.f, 10.f))
|
|
{
|
|
_coordinateVariables = {"x", "y", "z", "phi", "theta"};
|
|
}
|
|
|
|
DataProcessor::~DataProcessor() {};
|
|
|
|
void DataProcessor::useLog(bool useLog) {
|
|
_useLog = useLog;
|
|
}
|
|
|
|
void DataProcessor::useHistogram(bool useHistogram) {
|
|
_useHistogram = useHistogram;
|
|
}
|
|
|
|
void DataProcessor::normValues(glm::vec2 normValues) {
|
|
_normValues = normValues;
|
|
}
|
|
|
|
glm::size3_t DataProcessor::dimensions() {
|
|
return _dimensions;
|
|
}
|
|
|
|
glm::vec2 DataProcessor::filterValues() {
|
|
return _filterValues;
|
|
}
|
|
|
|
void DataProcessor::clear() {
|
|
_min.clear();
|
|
_max.clear();
|
|
_sum.clear();
|
|
_standardDeviation.clear();
|
|
_histograms.clear();
|
|
_numValues.clear();
|
|
}
|
|
|
|
|
|
float DataProcessor::processDataPoint(float value, int option) {
|
|
if (_numValues.empty()) {
|
|
return 0.f;
|
|
}
|
|
std::shared_ptr<Histogram> histogram = _histograms[option];
|
|
float mean = (1.f / _numValues[option]) * _sum[option];
|
|
float sd = _standardDeviation[option];
|
|
|
|
float v;
|
|
if (_useHistogram) {
|
|
v = histogram->equalize(
|
|
normalizeWithStandardScore(value, mean, sd, _histNormValues)
|
|
) / 512.f;
|
|
} else {
|
|
v = normalizeWithStandardScore(value, mean, sd, _normValues);
|
|
}
|
|
|
|
// float v = normalizeWithStandardScore(value, mean, sd, _normValues);
|
|
return v;
|
|
}
|
|
|
|
float DataProcessor::normalizeWithStandardScore(float value, float mean, float sd,
|
|
glm::vec2 normalizationValues)
|
|
{
|
|
float zScoreMin = normalizationValues.x; //10.0f;//_normValues.x;
|
|
float zScoreMax = normalizationValues.y; //10.0f;//_normValues.y;
|
|
float standardScore = ( value - mean ) / sd;
|
|
// Clamp intresting values
|
|
standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
|
|
//return and normalize
|
|
return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax );
|
|
}
|
|
|
|
float DataProcessor::unnormalizeWithStandardScore(float standardScore, float mean,
|
|
float sd, glm::vec2 normalizationValues)
|
|
{
|
|
float zScoreMin = normalizationValues.x;
|
|
float zScoreMax = normalizationValues.y;
|
|
|
|
float value = standardScore*(zScoreMax+zScoreMin)-zScoreMin;
|
|
value = value*sd+mean;
|
|
|
|
// std::cout << value << std::endl;
|
|
return value;
|
|
// float standardScore = ( value - mean ) / sd;
|
|
// // Clamp intresting values
|
|
// standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
|
|
// //return and normalize
|
|
// return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax );
|
|
}
|
|
|
|
void DataProcessor::initializeVectors(int numOptions){
|
|
if (_min.empty()) {
|
|
_min = std::vector<float>(numOptions, std::numeric_limits<float>::max());
|
|
}
|
|
if (_max.empty()) {
|
|
_max = std::vector<float>(numOptions, std::numeric_limits<float>::min());
|
|
}
|
|
if (_sum.empty()) {
|
|
_sum = std::vector<float>(numOptions, 0.0f);
|
|
}
|
|
if (_standardDeviation.empty()) {
|
|
_standardDeviation = std::vector<float>(numOptions, 0.0f);
|
|
}
|
|
if (_numValues.empty()) {
|
|
_numValues = std::vector<float>(numOptions, 0.0f);
|
|
}
|
|
if (_histograms.empty()) {
|
|
_histograms = std::vector<std::shared_ptr<Histogram>>(numOptions, nullptr);
|
|
}
|
|
}
|
|
|
|
void DataProcessor::calculateFilterValues(std::vector<int> selectedOptions) {
|
|
int numSelected = selectedOptions.size();
|
|
std::shared_ptr<Histogram> histogram;
|
|
float mean, standardDeviation, filterMid, filterWidth;
|
|
|
|
_filterValues = glm::vec2(0.0);
|
|
if (numSelected <= 0) {
|
|
return;
|
|
}
|
|
|
|
if (!_histograms.empty()) {
|
|
for (int option : selectedOptions) {
|
|
if (!_useHistogram) {
|
|
mean = (1.0/_numValues[option])*_sum[option];
|
|
standardDeviation = _standardDeviation[option];
|
|
histogram = _histograms[option];
|
|
|
|
filterMid = histogram->highestBinValue(_useHistogram);
|
|
filterWidth = mean+histogram->binWidth();
|
|
|
|
filterMid = normalizeWithStandardScore(filterMid, mean, standardDeviation, _normValues);
|
|
filterWidth = fabs(0.5-normalizeWithStandardScore(filterWidth, mean, standardDeviation, _normValues));
|
|
} else {
|
|
Histogram hist = _histograms[option]->equalize();
|
|
filterMid = hist.highestBinValue(true);
|
|
std::cout << filterMid << std::endl;
|
|
filterWidth = 1.f / 512.f;
|
|
}
|
|
|
|
_filterValues += glm::vec2(filterMid, filterWidth);
|
|
|
|
}
|
|
_filterValues /= numSelected;
|
|
}
|
|
}
|
|
|
|
void DataProcessor::add(std::vector<std::vector<float>>& optionValues,
|
|
std::vector<float>& sum)
|
|
{
|
|
int numOptions = optionValues.size();
|
|
int numValues;
|
|
float mean, value, variance, standardDeviation;
|
|
|
|
for (int i=0; i<numOptions; i++) {
|
|
std::vector<float> values = optionValues[i];
|
|
numValues = values.size();
|
|
|
|
variance = 0;
|
|
mean = (1.0f/numValues)*sum[i];
|
|
|
|
for (int j=0; j<numValues; j++) {
|
|
value = values[j];
|
|
variance += pow(value-mean, 2);
|
|
}
|
|
|
|
standardDeviation = sqrt(variance/ numValues);
|
|
|
|
float oldStandardDeviation = _standardDeviation[i];
|
|
float oldMean = (1.0f/_numValues[i])*_sum[i];
|
|
|
|
_sum[i] += sum[i];
|
|
_standardDeviation[i] = sqrt(pow(standardDeviation, 2) + pow(_standardDeviation[i], 2));
|
|
_numValues[i] += numValues;
|
|
|
|
|
|
mean = (1.0f/_numValues[i])*_sum[i];
|
|
float min = normalizeWithStandardScore(_min[i], mean, _standardDeviation[i], _histNormValues);
|
|
float max = normalizeWithStandardScore(_max[i], mean, _standardDeviation[i], _histNormValues);
|
|
|
|
if (!_histograms[i]) {
|
|
_histograms[i] = std::make_shared<Histogram>(min, max, 512);
|
|
}
|
|
else {
|
|
const float* histData = _histograms[i]->data();
|
|
float histMin = _histograms[i]->minValue();
|
|
float histMax = _histograms[i]->maxValue();
|
|
int numBins = _histograms[i]->numBins();
|
|
|
|
float unNormHistMin = unnormalizeWithStandardScore(histMin, oldMean, oldStandardDeviation, _histNormValues);
|
|
float unNormHistMax = unnormalizeWithStandardScore(histMax, oldMean, oldStandardDeviation, _histNormValues);
|
|
//unnormalize histMin, histMax
|
|
// min = std::min(min, histMin)
|
|
std::shared_ptr<Histogram> newHist = std::make_shared<Histogram>(
|
|
std::min(min, normalizeWithStandardScore(unNormHistMin, mean, _standardDeviation[i], _histNormValues)),
|
|
std::min(max, normalizeWithStandardScore(unNormHistMax, mean, _standardDeviation[i], _histNormValues)),
|
|
numBins
|
|
);
|
|
|
|
for (int j = 0; j < numBins; j++) {
|
|
value = j * (histMax-histMin)+histMin;
|
|
value = unnormalizeWithStandardScore(value, oldMean, oldStandardDeviation, _histNormValues);
|
|
_histograms[i]->add(normalizeWithStandardScore(value, mean, _standardDeviation[i], _histNormValues), histData[j]);
|
|
}
|
|
// _histograms[i]->changeRange(min, max);
|
|
_histograms[i] = newHist;
|
|
}
|
|
|
|
for (int j = 0; j < numValues; j++) {
|
|
value = values[j];
|
|
_histograms[i]->add(normalizeWithStandardScore(value, mean, _standardDeviation[i], _histNormValues), 1);
|
|
}
|
|
|
|
_histograms[i]->generateEqualizer();
|
|
|
|
std::cout << std::endl;
|
|
_histograms[i]->print();
|
|
std::cout << std::endl;
|
|
std::cout << "Eq: ";
|
|
Histogram hist = _histograms[i]->equalize();
|
|
hist.print();
|
|
}
|
|
}
|
|
|
|
} // namespace
|