Files
OpenSpace/modules/globebrowsing/chunk/chunklevelevaluator.cpp

187 lines
8.6 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <ghoul/misc/assert.h>
#include <openspace/engine/openspaceengine.h>
#include <modules/globebrowsing/chunk/chunklevelevaluator.h>
#include <modules/globebrowsing/chunk/chunk.h>
#include <modules/globebrowsing/globes/chunkedlodglobe.h>
#include <modules/globebrowsing/globes/renderableglobe.h>
#include <modules/globebrowsing/layered_rendering/layeredtextures.h>
#include <algorithm>
namespace {
const std::string _loggerCat = "ChunkLevelEvaluator";
}
namespace openspace {
namespace globebrowsing {
int EvaluateChunkLevelByDistance::getDesiredLevel(const Chunk& chunk, const RenderData& data) const {
// Calculations are done in the reference frame of the globe. Hence, the camera
// position needs to be transformed with the inverse model matrix
glm::dmat4 inverseModelTransform = chunk.owner().inverseModelTransform();
const RenderableGlobe& globe = chunk.owner();
const Ellipsoid& ellipsoid = globe.ellipsoid();
Vec3 cameraPosition =
glm::dvec3(inverseModelTransform * glm::dvec4(data.camera.positionVec3(), 1));
Geodetic2 pointOnPatch = chunk.surfacePatch().closestPoint(
ellipsoid.cartesianToGeodetic2(cameraPosition));
Vec3 patchNormal = ellipsoid.geodeticSurfaceNormal(pointOnPatch);
Vec3 patchPosition = ellipsoid.cartesianSurfacePosition(pointOnPatch);
Chunk::BoundingHeights heights = chunk.getBoundingHeights();
Scalar heightToChunk = heights.min;
// Offset position according to height
patchPosition += patchNormal * heightToChunk;
Vec3 cameraToChunk = patchPosition - cameraPosition;
// Calculate desired level based on distance
Scalar distanceToPatch = glm::length(cameraToChunk);
Scalar distance = distanceToPatch;
Scalar scaleFactor = globe.generalProperties().lodScaleFactor * ellipsoid.minimumRadius();
Scalar projectedScaleFactor = scaleFactor / distance;
int desiredLevel = ceil(log2(projectedScaleFactor));
return desiredLevel;
}
int EvaluateChunkLevelByProjectedArea::getDesiredLevel(const Chunk& chunk, const RenderData& data) const {
// Calculations are done in the reference frame of the globe. Hence, the camera
// position needs to be transformed with the inverse model matrix
glm::dmat4 inverseModelTransform = chunk.owner().inverseModelTransform();
const RenderableGlobe& globe = chunk.owner();
const Ellipsoid& ellipsoid = globe.ellipsoid();
glm::dvec4 cameraPositionModelSpace = glm::dvec4(data.camera.positionVec3(), 1);
Vec3 cameraPosition = glm::dvec3(inverseModelTransform * cameraPositionModelSpace);
Vec3 cameraToEllipsoidCenter = -cameraPosition;
Geodetic2 cameraGeodeticPos = ellipsoid.cartesianToGeodetic2(cameraPosition);
// Approach:
// The projected area of the chunk will be calculated based on a small area that
// is close to the camera, and the scaled up to represent the full area.
// The advantage of doing this is that it will better handle the cases where the
// full patch is very curved (e.g. stretches from latitude 0 to 90 deg).
const Geodetic2 center = chunk.surfacePatch().center();
const Geodetic2 closestCorner = chunk.surfacePatch().closestCorner(cameraGeodeticPos);
// Camera
// |
// V
//
// oo
// [ ]<
// *geodetic space*
//
// closestCorner
// +-----------------+ <-- north east corner
// | |
// | center |
// | |
// +-----------------+ <-- south east corner
Chunk::BoundingHeights heights = chunk.getBoundingHeights();
const Geodetic3 c = { center, heights.min };
const Geodetic3 c1 = { Geodetic2(center.lat, closestCorner.lon), heights.min };
const Geodetic3 c2 = { Geodetic2(closestCorner.lat, center.lon), heights.min };
// Camera
// |
// V
//
// oo
// [ ]<
// *geodetic space*
//
// +--------c2-------+ <-- north east corner
// | |
// c1 c |
// | |
// +-----------------+ <-- south east corner
// Go from geodetic to cartesian space
Vec3 A = cameraToEllipsoidCenter + ellipsoid.cartesianPosition(c);
Vec3 B = cameraToEllipsoidCenter + ellipsoid.cartesianPosition(c1);
Vec3 C = cameraToEllipsoidCenter + ellipsoid.cartesianPosition(c2);
// Project onto unit sphere
A = glm::normalize(A);
B = glm::normalize(B);
C = glm::normalize(C);
// Camera *cartesian space*
// | +--------+---+
// V __--'' __--'' /
// C-------A--------- +
// oo / / /
//[ ]< +-------B----------+
//
// If the geodetic patch is small (i.e. has small width), that means the patch in
// cartesian space will be almost flat, and in turn, the triangle ABC will roughly
// correspond to 1/8 of the full area
const Vec3 AB = B - A;
const Vec3 AC = C - A;
double areaABC = 0.5 * glm::length(glm::cross(AC, AB));
double projectedChunkAreaApprox = 8 * areaABC;
double scaledArea = globe.generalProperties().lodScaleFactor * projectedChunkAreaApprox;
return chunk.tileIndex().level + round(scaledArea - 1);
}
int EvaluateChunkLevelByAvailableTileData::getDesiredLevel(const Chunk& chunk, const RenderData& data) const {
auto tileProvidermanager = chunk.owner().chunkedLodGlobe()->getTileProviderManager();
auto heightLayers = tileProvidermanager->layerGroup(LayeredTextures::HeightMaps).activeLayers();
int currLevel = chunk.tileIndex().level;
for (size_t i = 0; i < LayeredTextures::NUM_TEXTURE_CATEGORIES; i++) {
for (auto layer : tileProvidermanager->layerGroup(i).activeLayers()) {
Tile::Status tileStatus = layer.tileProvider->getTileStatus(chunk.tileIndex());
if (tileStatus == Tile::Status::OK) {
return UNKNOWN_DESIRED_LEVEL;
}
}
}
return currLevel - 1;;
}
} // namespace globebrowsing
} // namespace openspace